On the conductor formula of Bloch
Publications Mathématiques de l'IHÉS (2004)
- Volume: 100, page 5-151
- ISSN: 0073-8301
Access Full Article
topAbstract
topHow to cite
topKato, Kazuya, and Saito, Takeshi. "On the conductor formula of Bloch." Publications Mathématiques de l'IHÉS 100 (2004): 5-151. <http://eudml.org/doc/104203>.
@article{Kato2004,
abstract = {In [6], S. Bloch conjectures a formula for the Artin conductor of the ℓ-adic etale cohomology of a regular model of a variety over a local field and proves it for a curve. The formula, which we call the conductor formula of Bloch, enables us to compute the conductor that measures the wild ramification by using the sheaf of differential 1-forms. In this paper, we prove the formula in arbitrary dimension under the assumption that the reduced closed fiber has normal crossings.},
author = {Kato, Kazuya, Saito, Takeshi},
journal = {Publications Mathématiques de l'IHÉS},
language = {eng},
pages = {5-151},
publisher = {Springer},
title = {On the conductor formula of Bloch},
url = {http://eudml.org/doc/104203},
volume = {100},
year = {2004},
}
TY - JOUR
AU - Kato, Kazuya
AU - Saito, Takeshi
TI - On the conductor formula of Bloch
JO - Publications Mathématiques de l'IHÉS
PY - 2004
PB - Springer
VL - 100
SP - 5
EP - 151
AB - In [6], S. Bloch conjectures a formula for the Artin conductor of the ℓ-adic etale cohomology of a regular model of a variety over a local field and proves it for a curve. The formula, which we call the conductor formula of Bloch, enables us to compute the conductor that measures the wild ramification by using the sheaf of differential 1-forms. In this paper, we prove the formula in arbitrary dimension under the assumption that the reduced closed fiber has normal crossings.
LA - eng
UR - http://eudml.org/doc/104203
ER -
References
top- 1. A. Abbes, Cycles on arithmetic surfaces, Compos. Math., 122 (2000), no. 1, 23–111. Zbl0986.14014MR1771449
- 2. A. Abbes, The Whitney sum formula for localized Chern classes, to appear in J. Théor. Nombres Bordx.
- 3. A. Abbes and T. Saito, Ramification groups of local fields with imperfect residue fields II, Doc. Math., Extra Volume Kato (2003), 3–70. Zbl1127.11349MR2000773
- 4. K. Arai, Conductor formula of Bloch, in tame case (in Japanese), Master thesis at University of Tokyo, 2000.
- 5. A. Blanco, J. Majadas, and A. Rodicio, Projective exterior Koszul homology and decomposition of the Tor functor, Invent. Math., 123 (1996), 123–140. Zbl0856.13009MR1376249
- 6. S. Bloch, Cycles on arithmetic schemes and Euler characteristics of curves, Algebraic geometry, Bowdoin, 1985, 421–450, Proc. Symp. Pure Math. 46, Part 2, Am. Math. Soc., Providence, RI (1987). Zbl0654.14004MR927991
- 7. T. Chinburg, G. Pappas, and M. Taylor, ε-constants and Arakelov Euler characteristics, Math. Res. Lett., 7 (2000), no. 4, 433–446. Zbl1097.14501
- 8. A. J. de Jong, Smoothness, semi-stability and alterations, Publ. Math., Inst. Hautes Étud. Sci., 83 (1996), 51–93. Zbl0916.14005MR1423020
- 9. P. Deligne, Équations différentielles à points singuliers réguliers, Lect. Notes Math. 163, Springer, Berlin-New York (1970). Zbl0244.14004MR417174
- 10. P. Deligne and N. Katz, Groupes de monodromie en géométrie algébrique, (SGA 7 II), Lect. Notes Math. 340, Springer, Berlin-New York (1973). Zbl0258.00005MR354657
- 11. A. Dold and D. Puppe, Homologie nicht-additiver Funktoren, Anwendungen, Ann. Inst. Fourier, 11 (1961), 201–312. Zbl0098.36005MR150183
- 12. K. Fujiwara and K. Kato, Logarithmic etale topology theory, preprint.
- 13. W. Fulton, Intersection theory, 2nd ed. Ergeb. Math. Grenzgeb., 3. Folge. 2, Springer, Berlin (1998). Zbl0541.14005MR1644323
- 14. W. Fulton and S. Lang, Riemann-Roch algebra, Grundlehren Math. Wiss. 277, Springer, Berlin-New York (1985). Zbl0579.14011MR801033
- 15. A. Grothendieck with J. Dieudonné, Eléments de géométrie algèbrique IV, Publ. Math., Inst. Hautes Étud. Sci., 20, 24, 28, 32 (1964–1967). Zbl0136.15901MR173675
- 16. A. Grothendieck et. al., Théorie des topos et cohomologie étale des schemas, (SGA 4), tome 3, Lect. Notes Math. 305, Springer, Berlin-New York (1973). Zbl0245.00002MR463174
- 17. A. Grothendieck et. al., Théorie des intersections et théorème de Riemann-Roch, (SGA 6), Lect. Notes Math. 225, Springer, Berlin-New York (1971). MR354655
- 18. R. Hartshorne, Residues and Duality, Lect. Notes Math. 20, Springer, Berlin-New York (1966). Zbl0212.26101MR222093
- 19. L. Illusie, Complexe cotangent et déformations I, Lect. Notes Math. 239, Springer, Berlin-New York (1971). Zbl0224.13014MR491680
- 20. L. Illusie, An overview of the work of K. Fujiwara, K. Kato, and C. Nakayama on logarithmic etale cohomology, Cohomologies p-adiques et applications arithmétiques, II. Astérisque, 279 (2002), 271–322. Zbl1052.14005MR1922832
- 21. L. Illusie, Champs toriques et log lissité, preprint (2000).
- 22. B. Iversen, Critical points of an algebraic function, Invent. Math. 12 (1971), 210–224. Zbl0223.14003MR342512
- 23. K. Kato, Logarithmic structures of Fontaine-Illusie, Algebraic analysis, geometry, and number theory (J.-I. Igusa ed.), Johns Hopkins UP, Baltimore (1989), 191–224. Zbl0776.14004MR1463703
- 24. K. Kato, Class field theory, -modules, and ramification on higher dimensional schemes, preprint, unpublished version. Zbl0864.11057
- 25. K. Kato, Toric singularities, Am. J. Math., 116 (1994), 1073–1099. Zbl0832.14002MR1296725
- 26. K. Kato, S. Saito, and T. Saito, Artin characters for algebraic surfaces, Am. J. Math., 110 (1988), no. 1, 49–75. Zbl0673.14020MR926738
- 27. M. Nagata, A generalization of the imbedding problem of an abstract variety in a complete variety, J. Math. Kyoto Univ., 3 (1963), 89–102. Zbl0223.14011MR158892
- 28. C. Nakayama, Logarithmic étale cohomology, Math. Ann., 308 (1997), 365–404. Zbl0877.14016MR1457738
- 29. C. Nakayama, Nearby cycles for log smooth families, Compos. Math., 112 (1998), 45–75. Zbl0926.14006MR1622751
- 30. T. Ochiai, l-independence of the trace of monodromy, Math. Ann., 315 (1999), no. 2, 321–340. Zbl0980.14014MR1715253
- 31. A. Ogg, Elliptic curves and wild ramification, Am. J. Math. 89 (1967), 1–21. Zbl0147.39803MR207694
- 32. M. Olsson, Logarithmic geometry and algebraic stacks, Ann. Sci. Éc. Norm. Supér., 36 (2003), 747–791. Zbl1069.14022MR2032986
- 33. F. Orgogozo, Conjecture de Bloch et nombres de Milnor, Ann. Inst. Fourier, 53 (2003), 1739–1754. Zbl1065.14005MR2038779
- 34. D. Quillen, Notes on the homology of commutative rings, Mimeographed Notes, MIT (1968). Zbl0234.18010
- 35. D. Quillen, On the (co-) homology of commutative rings, in Applications of Categorical Algebra (Proc. Sympos. Pure Math., XVII, New York, 1968, 65–87. Am. Math. Soc., Providence, R.I. Zbl0234.18010MR257068
- 36. J.-P. Serre, Corps locaux, 3rd ed., Hermann, Paris (1968). Zbl0137.02601MR354618
- 37. J.-P. Serre, Représentations linéaires des groupes finis, 3rd ed., Hermann, Paris (1978). Zbl0407.20003MR543841
- 38. T. Saito, Conductor, discriminant, and the Noether formula for arithmetic surfaces, Duke Math. J., 57 (1988), no. 1, 151–173. Zbl0657.14017MR952229
- 39. T. Saito, Self-intersection 0-cycles and coherent sheaves on arithmetic schemes, Duke Math. J., 57 (1988), no. 2, 555–578. Zbl0687.14004MR962520
- 40. T. Saito, Parity in Bloch’s conductor formula in even dimension, to appear in J. Théor. Nombres Bordx. Zbl1093.14030
- 41. T. Saito, Weight spectral sequences and independence of ℓ, J. de l’Institut Math. de Jussieu, 2 (2003), 1–52. Zbl1084.14027
- 42. C. Weibel, An introduction to homological algebra, Cambr. Stud. Adv. Math., 38, Cambridge UP, Cambridge (1994). Zbl0797.18001MR1269324
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.