On the conductor formula of Bloch

Kazuya Kato; Takeshi Saito

Publications Mathématiques de l'IHÉS (2004)

  • Volume: 100, page 5-151
  • ISSN: 0073-8301

Abstract

top
In [6], S. Bloch conjectures a formula for the Artin conductor of the ℓ-adic etale cohomology of a regular model of a variety over a local field and proves it for a curve. The formula, which we call the conductor formula of Bloch, enables us to compute the conductor that measures the wild ramification by using the sheaf of differential 1-forms. In this paper, we prove the formula in arbitrary dimension under the assumption that the reduced closed fiber has normal crossings.

How to cite

top

Kato, Kazuya, and Saito, Takeshi. "On the conductor formula of Bloch." Publications Mathématiques de l'IHÉS 100 (2004): 5-151. <http://eudml.org/doc/104203>.

@article{Kato2004,
abstract = {In [6], S. Bloch conjectures a formula for the Artin conductor of the ℓ-adic etale cohomology of a regular model of a variety over a local field and proves it for a curve. The formula, which we call the conductor formula of Bloch, enables us to compute the conductor that measures the wild ramification by using the sheaf of differential 1-forms. In this paper, we prove the formula in arbitrary dimension under the assumption that the reduced closed fiber has normal crossings.},
author = {Kato, Kazuya, Saito, Takeshi},
journal = {Publications Mathématiques de l'IHÉS},
language = {eng},
pages = {5-151},
publisher = {Springer},
title = {On the conductor formula of Bloch},
url = {http://eudml.org/doc/104203},
volume = {100},
year = {2004},
}

TY - JOUR
AU - Kato, Kazuya
AU - Saito, Takeshi
TI - On the conductor formula of Bloch
JO - Publications Mathématiques de l'IHÉS
PY - 2004
PB - Springer
VL - 100
SP - 5
EP - 151
AB - In [6], S. Bloch conjectures a formula for the Artin conductor of the ℓ-adic etale cohomology of a regular model of a variety over a local field and proves it for a curve. The formula, which we call the conductor formula of Bloch, enables us to compute the conductor that measures the wild ramification by using the sheaf of differential 1-forms. In this paper, we prove the formula in arbitrary dimension under the assumption that the reduced closed fiber has normal crossings.
LA - eng
UR - http://eudml.org/doc/104203
ER -

References

top
  1. 1. A. Abbes, Cycles on arithmetic surfaces, Compos. Math., 122 (2000), no. 1, 23–111. Zbl0986.14014MR1771449
  2. 2. A. Abbes, The Whitney sum formula for localized Chern classes, to appear in J. Théor. Nombres Bordx. 
  3. 3. A. Abbes and T. Saito, Ramification groups of local fields with imperfect residue fields II, Doc. Math., Extra Volume Kato (2003), 3–70. Zbl1127.11349MR2000773
  4. 4. K. Arai, Conductor formula of Bloch, in tame case (in Japanese), Master thesis at University of Tokyo, 2000. 
  5. 5. A. Blanco, J. Majadas, and A. Rodicio, Projective exterior Koszul homology and decomposition of the Tor functor, Invent. Math., 123 (1996), 123–140. Zbl0856.13009MR1376249
  6. 6. S. Bloch, Cycles on arithmetic schemes and Euler characteristics of curves, Algebraic geometry, Bowdoin, 1985, 421–450, Proc. Symp. Pure Math. 46, Part 2, Am. Math. Soc., Providence, RI (1987). Zbl0654.14004MR927991
  7. 7. T. Chinburg, G. Pappas, and M. Taylor, ε-constants and Arakelov Euler characteristics, Math. Res. Lett., 7 (2000), no. 4, 433–446. Zbl1097.14501
  8. 8. A. J. de Jong, Smoothness, semi-stability and alterations, Publ. Math., Inst. Hautes Étud. Sci., 83 (1996), 51–93. Zbl0916.14005MR1423020
  9. 9. P. Deligne, Équations différentielles à points singuliers réguliers, Lect. Notes Math. 163, Springer, Berlin-New York (1970). Zbl0244.14004MR417174
  10. 10. P. Deligne and N. Katz, Groupes de monodromie en géométrie algébrique, (SGA 7 II), Lect. Notes Math. 340, Springer, Berlin-New York (1973). Zbl0258.00005MR354657
  11. 11. A. Dold and D. Puppe, Homologie nicht-additiver Funktoren, Anwendungen, Ann. Inst. Fourier, 11 (1961), 201–312. Zbl0098.36005MR150183
  12. 12. K. Fujiwara and K. Kato, Logarithmic etale topology theory, preprint. 
  13. 13. W. Fulton, Intersection theory, 2nd ed. Ergeb. Math. Grenzgeb., 3. Folge. 2, Springer, Berlin (1998). Zbl0541.14005MR1644323
  14. 14. W. Fulton and S. Lang, Riemann-Roch algebra, Grundlehren Math. Wiss. 277, Springer, Berlin-New York (1985). Zbl0579.14011MR801033
  15. 15. A. Grothendieck with J. Dieudonné, Eléments de géométrie algèbrique IV, Publ. Math., Inst. Hautes Étud. Sci., 20, 24, 28, 32 (1964–1967). Zbl0136.15901MR173675
  16. 16. A. Grothendieck et. al., Théorie des topos et cohomologie étale des schemas, (SGA 4), tome 3, Lect. Notes Math. 305, Springer, Berlin-New York (1973). Zbl0245.00002MR463174
  17. 17. A. Grothendieck et. al., Théorie des intersections et théorème de Riemann-Roch, (SGA 6), Lect. Notes Math. 225, Springer, Berlin-New York (1971). MR354655
  18. 18. R. Hartshorne, Residues and Duality, Lect. Notes Math. 20, Springer, Berlin-New York (1966). Zbl0212.26101MR222093
  19. 19. L. Illusie, Complexe cotangent et déformations I, Lect. Notes Math. 239, Springer, Berlin-New York (1971). Zbl0224.13014MR491680
  20. 20. L. Illusie, An overview of the work of K. Fujiwara, K. Kato, and C. Nakayama on logarithmic etale cohomology, Cohomologies p-adiques et applications arithmétiques, II. Astérisque, 279 (2002), 271–322. Zbl1052.14005MR1922832
  21. 21. L. Illusie, Champs toriques et log lissité, preprint (2000). 
  22. 22. B. Iversen, Critical points of an algebraic function, Invent. Math. 12 (1971), 210–224. Zbl0223.14003MR342512
  23. 23. K. Kato, Logarithmic structures of Fontaine-Illusie, Algebraic analysis, geometry, and number theory (J.-I. Igusa ed.), Johns Hopkins UP, Baltimore (1989), 191–224. Zbl0776.14004MR1463703
  24. 24. K. Kato, Class field theory, 𝒟 -modules, and ramification on higher dimensional schemes, preprint, unpublished version. Zbl0864.11057
  25. 25. K. Kato, Toric singularities, Am. J. Math., 116 (1994), 1073–1099. Zbl0832.14002MR1296725
  26. 26. K. Kato, S. Saito, and T. Saito, Artin characters for algebraic surfaces, Am. J. Math., 110 (1988), no. 1, 49–75. Zbl0673.14020MR926738
  27. 27. M. Nagata, A generalization of the imbedding problem of an abstract variety in a complete variety, J. Math. Kyoto Univ., 3 (1963), 89–102. Zbl0223.14011MR158892
  28. 28. C. Nakayama, Logarithmic étale cohomology, Math. Ann., 308 (1997), 365–404. Zbl0877.14016MR1457738
  29. 29. C. Nakayama, Nearby cycles for log smooth families, Compos. Math., 112 (1998), 45–75. Zbl0926.14006MR1622751
  30. 30. T. Ochiai, l-independence of the trace of monodromy, Math. Ann., 315 (1999), no. 2, 321–340. Zbl0980.14014MR1715253
  31. 31. A. Ogg, Elliptic curves and wild ramification, Am. J. Math. 89 (1967), 1–21. Zbl0147.39803MR207694
  32. 32. M. Olsson, Logarithmic geometry and algebraic stacks, Ann. Sci. Éc. Norm. Supér., 36 (2003), 747–791. Zbl1069.14022MR2032986
  33. 33. F. Orgogozo, Conjecture de Bloch et nombres de Milnor, Ann. Inst. Fourier, 53 (2003), 1739–1754. Zbl1065.14005MR2038779
  34. 34. D. Quillen, Notes on the homology of commutative rings, Mimeographed Notes, MIT (1968). Zbl0234.18010
  35. 35. D. Quillen, On the (co-) homology of commutative rings, in Applications of Categorical Algebra (Proc. Sympos. Pure Math., XVII, New York, 1968, 65–87. Am. Math. Soc., Providence, R.I. Zbl0234.18010MR257068
  36. 36. J.-P. Serre, Corps locaux, 3rd ed., Hermann, Paris (1968). Zbl0137.02601MR354618
  37. 37. J.-P. Serre, Représentations linéaires des groupes finis, 3rd ed., Hermann, Paris (1978). Zbl0407.20003MR543841
  38. 38. T. Saito, Conductor, discriminant, and the Noether formula for arithmetic surfaces, Duke Math. J., 57 (1988), no. 1, 151–173. Zbl0657.14017MR952229
  39. 39. T. Saito, Self-intersection 0-cycles and coherent sheaves on arithmetic schemes, Duke Math. J., 57 (1988), no. 2, 555–578. Zbl0687.14004MR962520
  40. 40. T. Saito, Parity in Bloch’s conductor formula in even dimension, to appear in J. Théor. Nombres Bordx. Zbl1093.14030
  41. 41. T. Saito, Weight spectral sequences and independence of ℓ, J. de l’Institut Math. de Jussieu, 2 (2003), 1–52. Zbl1084.14027
  42. 42. C. Weibel, An introduction to homological algebra, Cambr. Stud. Adv. Math., 38, Cambridge UP, Cambridge (1994). Zbl0797.18001MR1269324

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.