Parity in Bloch’s conductor formula in even dimension
- [1] Department of Mathematical Sciences, University of Tokyo Tokyo 153-8914 Japan
Journal de Théorie des Nombres de Bordeaux (2004)
- Volume: 16, Issue: 2, page 403-421
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topSaito, Takeshi. "Parity in Bloch’s conductor formula in even dimension." Journal de Théorie des Nombres de Bordeaux 16.2 (2004): 403-421. <http://eudml.org/doc/249274>.
@article{Saito2004,
abstract = {For a variety over a local field, Bloch proposed a conjectural formula for the alternating sum of Artin conductor of $\ell $-adic cohomology. We prove that the formula is valid modulo 2 if the variety has even dimension.},
affiliation = {Department of Mathematical Sciences, University of Tokyo Tokyo 153-8914 Japan},
author = {Saito, Takeshi},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {2},
pages = {403-421},
publisher = {Université Bordeaux 1},
title = {Parity in Bloch’s conductor formula in even dimension},
url = {http://eudml.org/doc/249274},
volume = {16},
year = {2004},
}
TY - JOUR
AU - Saito, Takeshi
TI - Parity in Bloch’s conductor formula in even dimension
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2004
PB - Université Bordeaux 1
VL - 16
IS - 2
SP - 403
EP - 421
AB - For a variety over a local field, Bloch proposed a conjectural formula for the alternating sum of Artin conductor of $\ell $-adic cohomology. We prove that the formula is valid modulo 2 if the variety has even dimension.
LA - eng
UR - http://eudml.org/doc/249274
ER -
References
top- S. Bloch, Cycles on arithmetic schemes and Euler characteristics of curves. Proc. Symp. Pure Math. AMS 46 Part 2 (1987), 421–450. Zbl0654.14004MR927991
- —–, De Rham cohomology and conductors of curves. Duke Math. J. 54 (1987), 295–308. Zbl0632.14018
- P. Deligne (after A. Grothendieck), Résumé des premiers exposés de A.Grothendieck. in SGA7I, Lecture notes in Math. 288, Springer, 1–23. Zbl0267.14003
- A. Dold, D. Puppe, Homologie nicht additiver Funktoren. Ann. Inst. Fourier 11 (1961), 201–312. Zbl0098.36005MR150183
- K. Fujiwara, A proof of the absolute purity conjecture (after Gabber). Algebraic geometry 2000, Azumino (Hotaka), 153–183, Adv. Stud. Pure Math. 36, Math. Soc. Japan, Tokyo, 2002 Zbl1059.14026MR1971516
- W. Fulton, Intersection theory. Springer. Zbl0541.14005MR732620
- L. Illusie, Complexe cotangent et déformations I. Lecture notes in Math. 239 Springer. Zbl0224.13014MR491680
- K. Kato, T. Saito, Conductor formula of Bloch. To appear in Publ. Math. IHES. Zbl1099.14009MR2102698
- T. Ochiai, -independence of the trace of monodromy. Math. Ann. 315 (1999), 321–340. Zbl0980.14014MR1715253
- T. Saito, Self-intersection 0-cycles and coherent sheaves on arithmetic schemes. Duke Math. J. 57 (1988), 555–578. Zbl0687.14004MR962520
- —–, Jacobi sum Hecke characters, de Rham discriminant, and the determinant of -adic cohomologies. J. of Alg. Geom. 3 (1994), 411–434. Zbl0833.14011
- J.-P. Serre, Conducteurs d’Artin des caracteres réels. Inventiones Math. 14 (1971), 173–183. Zbl0229.13006MR321908
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.