Sous-groupes canoniques et cycles évanescents p-adiques pour les variétés abéliennes

Ahmed Abbes; Abdellah Mokrane

Publications Mathématiques de l'IHÉS (2004)

  • Volume: 99, page 117-162
  • ISSN: 0073-8301

How to cite

top

Abbes, Ahmed, and Mokrane, Abdellah. "Sous-groupes canoniques et cycles évanescents p-adiques pour les variétés abéliennes." Publications Mathématiques de l'IHÉS 99 (2004): 117-162. <http://eudml.org/doc/104204>.

@article{Abbes2004,
author = {Abbes, Ahmed, Mokrane, Abdellah},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {vanishing cycles; abelian varieties},
language = {fre},
pages = {117-162},
publisher = {Springer},
title = {Sous-groupes canoniques et cycles évanescents p-adiques pour les variétés abéliennes},
url = {http://eudml.org/doc/104204},
volume = {99},
year = {2004},
}

TY - JOUR
AU - Abbes, Ahmed
AU - Mokrane, Abdellah
TI - Sous-groupes canoniques et cycles évanescents p-adiques pour les variétés abéliennes
JO - Publications Mathématiques de l'IHÉS
PY - 2004
PB - Springer
VL - 99
SP - 117
EP - 162
LA - fre
KW - vanishing cycles; abelian varieties
UR - http://eudml.org/doc/104204
ER -

References

top
  1. 1. A. Abbes and T. Saito, Ramification of local fields with imperfect residue fields, Am. J. Math., 124 (2002), 879–920. Zbl1084.11064MR1925338
  2. 2. A. Abbes and T. Saito, Ramification of local fields with imperfect residue fields II, Documenta Math., volume en l’honneur de K. Kato (2003), 5–72. Zbl1127.11349
  3. 3. P. Berthelot, Cohomologie rigide et cohomologie rigide à supports propres, première partie, Prépublication 96–03 de Rennes (1996). 
  4. 4. P. Berthelot, Finitude et pureté cohomologique en cohomologie rigide, Invent. Math., 128 (1997), 329–377. Zbl0908.14005MR1440308
  5. 5. S. Bloch and K. Kato, p-adic étale cohomology, Publ. Math., Inst. Hautes Étud. Sci., 63 (1986), 107–152. Zbl0613.14017MR849653
  6. 6. S. Bosch, U. Güntzer, and R. Remmert, Non–Archimedean Analysis, A Series of Comprehensive Studies in Mathematics 261, Springer–Verlag (1984). Zbl0539.14017MR746961
  7. 7. S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron models, Ergebnisse der Mathematik 21 (1990), Springer-Verlag. Zbl0705.14001MR1045822
  8. 8. S. Bosch and W. Lütkebohmert, Formal and rigid geometry, II. Flattening techniques, Math. Ann., 296 (1993), 403–429. Zbl0808.14018MR1225983
  9. 9. S. Bosch, W. Lütkebohmert, and M. Raynaud, Formal and rigid geometry, IV. The reduced fiber theorem, Invent. Math., 119 (1995), 361–398. Zbl0839.14014MR1312505
  10. 10. R. Coleman, Classical and overconvergent modular forms, Invent. Math., 124 (1996), 215–241. Zbl0851.11030MR1369416
  11. 11. R. Coleman, p-adic Banach spaces and families of modular forms, Invent. Math., 127 (1997), 417–479. Zbl0918.11026MR1431135
  12. 12. A. J. de Jong, Crystalline Dieudonné module theory via formal and rigid geometry, Publ. Math., Inst. Hautes Étud. Sci., 82 (1995), 5–96. Zbl0864.14009MR1383213
  13. 13. P. Deligne and L. Illusie, Cristaux ordinaires et coordonnées canoniques, avec Appendice de N. Katz, dans : Surface algébriques, éd. J. Giraud, L. Illusie, M. Raynaud, Lect. Notes Math., 868 (1981), 80–137. Zbl0537.14012MR638599
  14. 14. P. Deligne and M. Rapoport, Les schémas de modules de courbes elliptiques, Lect. Notes Math., 349 (1973), 143–316. Zbl0281.14010MR337993
  15. 15. B. Dwork, p-adic cycles, Publ. Math., Inst. Hautes Étud. Sci., 37 (1969), 27–115. Zbl0284.14008MR294346
  16. 16. B. Dwork, On Hecke polynomials, Invent. Math., 12 (1971), 249–256. Zbl0219.14014MR302591
  17. 17. R. Elkik, Solution d’équations à coefficients dans un anneau hensélien, Ann. Sci. Éc. Norm. Supér., IV. Sér., 6 (1973), 553–604. Zbl0327.14001
  18. 18. G. Faltings and C.-L. Chai, Degeneration on abelian varieties, Ergebnisse der Mathematik 22 (1990), Springer-Verlag. Zbl0744.14031MR1083353
  19. 19. J.-M. Fontaine, Formes différentielles et Modules de Tate des variétés abéliennes sur les corps locaux, Invent. Math., 65 (1982), 379–409. Zbl0502.14015MR643559
  20. 20. J.-M. Fontaine and W. Messing, p-adic periods and p-adic étale cohomology, Cont. Math., 67 (1987), 179–207. Zbl0632.14016MR902593
  21. 21. R. Hartshorne, Algebraic geometry, Springer-Verlag (1977). Zbl0367.14001MR463157
  22. 22. K. Kato, Swan conductors for characters of degree one in the imperfect residue field case, Cont. Math., 83 (1989), 101–131. Zbl0716.12006MR991978
  23. 23. K. Kato, On p-adic vanishing cycles (Application of ideas of Fontaine-Messing), Adv. Stud. Pure Math., 10 (1987), 207–251. Zbl0645.14009MR946241
  24. 24. N. Katz, p-adic properties of modular schemes and modular forms, dans : Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Lect. Notes Math., 350 (1973), 69–190. Zbl0271.10033MR447119
  25. 25. N. Katz, Serre-Tate local moduli, dans : Surface algébriques, éd. J. Giraud, L. Illusie, M. Raynaud, Lect. Notes Math., 868 (1981), 138–202. Zbl0477.14007MR638600
  26. 26. P. Monsky, Formal cohomology: III. Fixed point theorems, Ann. Math., 93 (1971), 315–343. Zbl0213.47501MR321931
  27. 27. P. Monsky and G. Washnitzer, Formal cohomology: I, Ann. Math., 88 (1968), 181–217; Formal cohomology: II. The cohomology sequence of a pair, Ann. Math., 88 (1968) 218–238. Zbl0162.52601MR248141
  28. 28. L. Moret-Bailly, Pinceaux de variétés abéliennes, Astérisque, 129 (1985). Zbl0595.14032MR797982
  29. 29. D. Mumford, Geometric invariant theory, Springer-Verlag (1965). Zbl0147.39304MR214602
  30. 30. M. Raynaud, Schémas en groupes de type (p,...,p), Bull. Soc. Math. Fr., 102 (1974), 241–280. Zbl0325.14020MR419467
  31. 31. D. Wan, Higher rank case of Dwork’s conjecture, J. Am. Math. Soc., 13 (2000), 807–852. Zbl1086.11030
  32. 32. D. Wan, Rank one case of Dwork’s conjecture, J. Am. Math. Soc., 13 (2000), 853–908. Zbl1086.11031

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.