Dynamics on blowups of the projective plane

Curtis T. McMullen

Publications Mathématiques de l'IHÉS (2007)

  • Volume: 105, page 49-89
  • ISSN: 0073-8301

How to cite

top

McMullen, Curtis T.. "Dynamics on blowups of the projective plane." Publications Mathématiques de l'IHÉS 105 (2007): 49-89. <http://eudml.org/doc/104225>.

@article{McMullen2007,
author = {McMullen, Curtis T.},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {automorphisms of rational surfaces; attracting basins; Julia sets; Nagata's theorem},
language = {eng},
pages = {49-89},
publisher = {Springer},
title = {Dynamics on blowups of the projective plane},
url = {http://eudml.org/doc/104225},
volume = {105},
year = {2007},
}

TY - JOUR
AU - McMullen, Curtis T.
TI - Dynamics on blowups of the projective plane
JO - Publications Mathématiques de l'IHÉS
PY - 2007
PB - Springer
VL - 105
SP - 49
EP - 89
LA - eng
KW - automorphisms of rational surfaces; attracting basins; Julia sets; Nagata's theorem
UR - http://eudml.org/doc/104225
ER -

References

top
  1. 1. M.F. Atiyah, R. Bott, A Lefschetz fixed point formula for elliptic complexes II, Ann. Math., 88 (1968), 451-491 Zbl0167.21703MR232406
  2. 2. G. Bastien, M. Rogalski, Global behavior of the solutions of Lyness’ difference equation un+2un=un+1+a, J. Difference Equ. Appl., 10 (2004), 977-1003 Zbl1070.39025
  3. 3. E. Bedford and K. Kim, Dynamics of rational surface automorphisms: Linear fractional recurrences, Preprint, 2006. Zbl1185.37128
  4. 4. E. Bedford and K. Kim, Periodicities in linear fractional recurrences: Degree growth of birational surface maps, Preprint, 2005. Zbl1171.37023MR2280499
  5. 5. E. Bedford and J. Diller, Energy and invariant measures for birational surface maps, Duke Math. J., 128 (2005), 331–368. Zbl1076.37031MR2140266
  6. 6. Y. Bilu, Limit distribution of small points on algebraic tori, Duke Math. J., 89 (1997), 465-476 Zbl0918.11035MR1470340
  7. 7. R. E. Borcherds, The Leech Lattice and Other Lattice, Thesis, Trinity College, Cambridge, 1984. MR791880
  8. 8. N. Bourbaki, Groupes et algèbres de Lie, Chap. IV–VI, Hermann, 1968; Masson, 1981. Zbl0483.22001
  9. 9. S. Cantat, Dynamique des automorphismes des surfaces projectives complexes, C. R. Acad. Sci., Paris, Sér. I, Math., 328 (1999), 901-906 Zbl0943.37021MR1689873
  10. 10. S. Cantat, Dynamique des automorphismes des surfaces K3, Acta Math., 187 (2001), 1-57 Zbl1045.37007MR1864630
  11. 11. A. B. Coble, Algebraic Geometry and Theta Functions, Colloquium Publications, vol. 10, Amer. Math. Soc., 1961. Zbl55.0808.02MR123958JFM55.0808.02
  12. 12. J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups. Springer, 1999. Zbl0915.52003MR1662447
  13. 13. I. Dolgachev and D. Ortland, Point Sets in Projective Spaces and Theta Functions. Astérisque, vol. 165, 1988. Zbl0685.14029MR1007155
  14. 14. I. Dolgachev, D.-Q. Zhang, Coble rational surfaces, Amer. J. Math., 123 (2001), 79-114 Zbl1056.14054MR1827278
  15. 15. R. Dujardin, Laminar currents and birational dynamics, Duke Math. J., 131 (2006), 219-247 Zbl1099.37037MR2219241
  16. 16. V. Flammang, M. Grandcolas, and G. Rhin, Small Salem numbers, in Number Theory in Progress, vol. I, pp. 165–168, de Gruyter, 1999. Zbl0935.11038MR1689505
  17. 17. M. Gizatullin, Rational G-surfaces, Math. USSR Izv., 16 (1981), 103-134 Zbl0465.14017
  18. 18. P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley Interscience, 1978. Zbl0408.14001MR507725
  19. 19. M. Gromov, On the entropy of holomorphic maps, Enseign. Math., 49 (2003), 217-235 Zbl1080.37051MR2026895
  20. 20. B. Harbourne, Blowings-up of P2 and their blowings-down, Duke Math. J., 52 (1985), 129-148 Zbl0577.14025MR791295
  21. 21. B. Harbourne, Automorphisms of K3-like rational surfaces, in Algebraic Geometry, Bowdoin, 1985, Proc. Symp. Pure Math., vol. 48, pp. 17–28. Amer. Math. Soc., 1987. Zbl0651.14023MR927971
  22. 22. B. Harbourne, Rational surfaces with infinite automorphism group and no antipluricanonical curve, Proc. Amer. Math. Soc., 99 (1987), 409-414 Zbl0643.14019MR875372
  23. 23. B. Harbourne, Iterated blow-ups and moduli for rational surfaces, in Algebraic Geometry (Sundance, UT, 1986), Lect. Notes Math., vol. 1311, pp. 101–117, Springer, 1988. Zbl0661.14030MR951643
  24. 24. J. Harris and I. Morrison, Moduli of Curves, Springer, 1998. Zbl0913.14005MR1631825
  25. 25. R. Hartshorne, Algebraic Geometry, Springer, 1977. Zbl0367.14001MR463157
  26. 26. J. Hietarinta, C. Viallet, Singularity confinement and chaos in discrete systems, Phys. Rev. Lett., 81 (1997), 325-328 
  27. 27. A. Hirschowitz, Symétries des surfaces rationnelles génériques, Math. Ann., 281 (1988), 255-261 Zbl0662.14024MR949832
  28. 28. J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge University Press, 1990. Zbl0768.20016MR1066460
  29. 29. S. Kantor, Theorie der endlichen Gruppen von eindeutigen Transformationen in der Ebene, Mayer & Müller, 1895. Zbl26.0770.03JFM26.0770.03
  30. 30. E. Looijenga, Rational surfaces with an anticanonical cycle, Ann. Math., 114 (1981), 267-322 Zbl0509.14035MR632841
  31. 31. Y. Manin, Rational surfaces over perfect fields, II, Math. USSR Sb., 1 (1967), 141-168 Zbl0182.23701
  32. 32. Y. Manin, Cubic Forms. Algebra, Geometry, Arithmetic, North-Holland Publishing Co., 1986. Zbl0277.14014MR833513
  33. 33. J. F. McKee, P. Rowlinson, and C. J. Smyth, Pisot numbers from stars, in Number Theory in Progress, vol. I, pp. 309–319, de Gruyter, 1999. Zbl0931.11041MR1689512
  34. 34. C. McMullen, Coxeter groups, Salem numbers and the Hilbert metric, Publ. Math., Inst. Hautes Étud. Sci., 95 (2002), 151-183 Zbl1148.20305MR1953192
  35. 35. C. McMullen, Dynamics on K3 surfaces: Salem numbers and Siegel disks, J. Reine Angew. Math. 545 (2002), 201–233. Zbl1054.37026MR1896103
  36. 36. M. Nagata, On rational surfaces. I. Irreducible curves of arithmetic genus 0 or 1, Mem. Coll. Sci. Univ. Kyoto Ser. A Math., 32 (1960), 351-370 Zbl0100.16703MR126443
  37. 37. M. Nagata, On rational surfaces. II, Mem. Coll. Sci. Univ. Kyoto Ser. A Math. 33 (1961), 271–293. Zbl0100.16801MR126444
  38. 38. V. V. Nikulin, Discrete reflection groups in Lobachevsky spaces and algebraic surfaces, in Proceedings of the International Congress of Mathematicians, pp. 654–671, Amer. Math. Soc., 1986. Zbl0671.22006MR934268
  39. 39. L. Paris, Irreducible Coxeter groups, Preprint, 2005. Zbl1134.20046MR2333366
  40. 40. R. Penrose, C.A.B. Smith, A quadratic mapping with invariant cubic curve, Math. Proc. Camb. Philos. Soc., 89 (1981), 89-105 Zbl0453.14005MR591975
  41. 41. R. Rumely, On Bilu’s equidstribution theorem, Contemp. Math., 237 (1999), 159-166 Zbl1029.11030
  42. 42. R. Salem, Algebraic Numbers and Fourier Analysis, Wadsworth, 1983. Zbl0505.00033MR732447
  43. 43. J. Silverman, Rational points on K3 surfaces: A new canonical height, Invent. math., 105 (1991), 347-373 Zbl0754.14023MR1115546
  44. 44. T. Takenawa, Algebraic entropy and the space of initial values for discrete dynamical systems. J. Phys. A, 34 (2001), 10533–10545. Zbl0999.37028MR1877473
  45. 45. P. Du Val, On the Kantor group of a set of points in a plane, Proc. London Math. Soc., 42 (1936), 18-51 Zbl62.0751.02JFM62.0751.02
  46. 46. L. Wang, Rational points and canonical heights on K3-surfaces in P 1×P 1×P 1, in Recent Developments in the Inverse Galois Problem, pp. 273–289, Amer. Math. Soc., 1995. Zbl0849.14010MR1352278
  47. 47. D.-Q. Zhang, Automorphisms of finite order on rational surfaces. With an appendix by I. Dolgachev, J. Algebra 238 (2001), 560–589. Zbl1057.14053MR1823774

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.