Canonical integral structures on the de Rham cohomology of curves

Bryden Cais[1]

  • [1] McGill University Department of Mathematics 805 Sherbrooke Street West Montréal, QC. H3A 2K6 (Canada)

Annales de l’institut Fourier (2009)

  • Volume: 59, Issue: 6, page 2255-2300
  • ISSN: 0373-0956

Abstract

top
For a smooth and proper curve X K over the fraction field K of a discrete valuation ring R , we explain (under very mild hypotheses) how to equip the de Rham cohomology H dR 1 ( X K / K ) with a canonical integral structure: i.e., an R -lattice which is functorial in finite (generically étale) K -morphisms of X K and which is preserved by the cup-product auto-duality on H dR 1 ( X K / K ) . Our construction of this lattice uses a certain class of normal proper models of X K and relative dualizing sheaves. We show that our lattice naturally contains the lattice furnished by the (truncated) de Rham complex of a regular proper R -model of X K and that the index for this inclusion of lattices is a numerical invariant of X K (we call it the de Rham conductor). Using work of Bloch and of Liu-Saito, we prove that the de Rham conductor of X K is bounded above by the Artin conductor, and bounded below by the efficient conductor. We then study how the position of our canonical lattice inside the de Rham cohomology of X K is affected by finite extension of scalars.

How to cite

top

Cais, Bryden. "Canonical integral structures on the de Rham cohomology of curves." Annales de l’institut Fourier 59.6 (2009): 2255-2300. <http://eudml.org/doc/10454>.

@article{Cais2009,
abstract = {For a smooth and proper curve $X_K$ over the fraction field $K$ of a discrete valuation ring $R$, we explain (under very mild hypotheses) how to equip the de Rham cohomology $H^1_\{\mathrm\{dR\}\}(X_K/K)$ with a canonical integral structure: i.e., an $R$-lattice which is functorial in finite (generically étale) $K$-morphisms of $X_K$ and which is preserved by the cup-product auto-duality on $H^1_\{\mathrm\{dR\}\}(X_K/K)$. Our construction of this lattice uses a certain class of normal proper models of $X_K$ and relative dualizing sheaves. We show that our lattice naturally contains the lattice furnished by the (truncated) de Rham complex of a regular proper $R$-model of $X_K$ and that the index for this inclusion of lattices is a numerical invariant of $X_K$ (we call it the de Rham conductor). Using work of Bloch and of Liu-Saito, we prove that the de Rham conductor of $X_K$ is bounded above by the Artin conductor, and bounded below by the efficient conductor. We then study how the position of our canonical lattice inside the de Rham cohomology of $X_K$ is affected by finite extension of scalars.},
affiliation = {McGill University Department of Mathematics 805 Sherbrooke Street West Montréal, QC. H3A 2K6 (Canada)},
author = {Cais, Bryden},
journal = {Annales de l’institut Fourier},
keywords = {de Rham cohomology; $p$-adic local Langlands; curve; rational singularities; arithmetic surface; Grothendieck duality; Artin conductor; efficient conductor; simultaneous resolution of singularities; -adic local Langlands; arithmetic surfaces},
language = {eng},
number = {6},
pages = {2255-2300},
publisher = {Association des Annales de l’institut Fourier},
title = {Canonical integral structures on the de Rham cohomology of curves},
url = {http://eudml.org/doc/10454},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Cais, Bryden
TI - Canonical integral structures on the de Rham cohomology of curves
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 6
SP - 2255
EP - 2300
AB - For a smooth and proper curve $X_K$ over the fraction field $K$ of a discrete valuation ring $R$, we explain (under very mild hypotheses) how to equip the de Rham cohomology $H^1_{\mathrm{dR}}(X_K/K)$ with a canonical integral structure: i.e., an $R$-lattice which is functorial in finite (generically étale) $K$-morphisms of $X_K$ and which is preserved by the cup-product auto-duality on $H^1_{\mathrm{dR}}(X_K/K)$. Our construction of this lattice uses a certain class of normal proper models of $X_K$ and relative dualizing sheaves. We show that our lattice naturally contains the lattice furnished by the (truncated) de Rham complex of a regular proper $R$-model of $X_K$ and that the index for this inclusion of lattices is a numerical invariant of $X_K$ (we call it the de Rham conductor). Using work of Bloch and of Liu-Saito, we prove that the de Rham conductor of $X_K$ is bounded above by the Artin conductor, and bounded below by the efficient conductor. We then study how the position of our canonical lattice inside the de Rham cohomology of $X_K$ is affected by finite extension of scalars.
LA - eng
KW - de Rham cohomology; $p$-adic local Langlands; curve; rational singularities; arithmetic surface; Grothendieck duality; Artin conductor; efficient conductor; simultaneous resolution of singularities; -adic local Langlands; arithmetic surfaces
UR - http://eudml.org/doc/10454
ER -

References

top
  1. Shreeram Abhyankar, Simultaneous resolution for algebraic surfaces, Amer. J. Math. 78 (1956), 761-790 Zbl0073.37902MR82722
  2. Shreeram Abhyankar, Resolution of singularities of arithmetical surfaces, Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963) (1965), 111-152, Harper & Row, New York Zbl0147.20503MR200272
  3. Michael Artin, Algebraization of formal moduli. I, Global Analysis (Papers in Honor of K. Kodaira) (1969), 21-71, Univ. Tokyo Press, Tokyo Zbl0205.50402MR260746
  4. Michael Artin, Lipman’s proof of resolution of singularities for surfaces, Arithmetic geometry (Storrs, Conn., 1984) (1986), 267-287, CornellGaryG., New York Zbl0602.14011MR861980
  5. Spencer Bloch, de Rham cohomology and conductors of curves, Duke Math. J. 54 (1987), 295-308 Zbl0632.14018MR899399
  6. Siegfried Bosch, Ulrich Güntzer, Reinhold Remmert, Non-Archimedean analysis, 261 (1984), Springer-Verlag, Berlin Zbl0539.14017MR746961
  7. Siegfried Bosch, Werner Lütkebohmert, Michel Raynaud, Néron models, 21 (1990), Springer-Verlag, Berlin Zbl0705.14001MR1045822
  8. Bryden Cais, Canonical extensions of Néron models of Jacobians, (2008) Zbl1193.14058
  9. Brian Conrad, Grothendieck duality and base change, 1750 (2000), Springer-Verlag, Berlin Zbl0992.14001MR1804902
  10. Brian Conrad, Arithmetic moduli of generalized elliptic curves, J. Inst. Math. Jussieu 6 (2007), 209-278 Zbl1140.14018MR2311664
  11. Brian Conrad, Bas Edixhoven, William Stein, J 1 ( p ) has connected fibers, Doc. Math. 8 (2003), 331-408 (electronic) Zbl1101.14311MR2029169
  12. Pierre Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. (1971), 5-57 Zbl0219.14007MR498551
  13. Pierre Deligne, Luc Illusie, Relèvements modulo p 2 et décomposition du complexe de de Rham, Invent. Math. 89 (1987), 247-270 Zbl0632.14017MR894379
  14. Pierre Deligne, David Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. (1969), 75-109 Zbl0181.48803MR262240
  15. Pierre Deligne, Michael Rapoport, Les schémas de modules de courbes elliptiques, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) (1973), 143-316. Lecture Notes in Math., Vol. 349, Springer, Berlin Zbl0281.14010MR337993
  16. Renée Elkik, Rationalité des singularités canoniques, Invent. Math. 64 (1981), 1-6 Zbl0498.14002MR621766
  17. Matthew Emerton, On the interpolation of systems of eigenvalues attached to automorphic Hecke eigenforms, Invent. Math. 164 (2006), 1-84 Zbl1090.22008MR2207783
  18. Alexander Grothendieck, Jean Dieudonné, Éléments de géométrie algébrique, (1960–7), Inst. Hautes Études Sci. Publ. Math. Zbl0203.23301
  19. Robin Hartshorne, Residues and duality, (1966), Springer-Verlag, Berlin MR222093
  20. Stephen Lichtenbaum, Curves over discrete valuation rings, Amer. J. Math. 90 (1968), 380-405 Zbl0194.22101MR230724
  21. Joseph Lipman, Rational singularities, with applications to algebraic surfaces and unique factorization, Inst. Hautes Études Sci. Publ. Math. (1969), 195-279 Zbl0181.48903MR276239
  22. Joseph Lipman, Desingularization of two-dimensional schemes, Ann. Math. (2) 107 (1978), 151-207 Zbl0349.14004MR491722
  23. Qing Liu, Conducteur et discriminant minimal de courbes de genre 2 , Compositio Math. 94 (1994), 51-79 Zbl0837.14023MR1302311
  24. Qing Liu, Algebraic geometry and arithmetic curves, 6 (2002), Oxford University Press, Oxford Zbl0996.14005MR1917232
  25. Qing Liu, Stable reduction of finite covers of curves, Compos. Math. 142 (2006), 101-118 Zbl1108.14020MR2196764
  26. Qing Liu, Dino Lorenzini, Models of curves and finite covers, Compositio Math. 118 (1999), 61-102 Zbl0962.14020MR1705977
  27. Qing Liu, Takeshi Saito, Inequality for conductor and differentials of a curve over a local field, J. Algebraic Geom. 9 (2000), 409-424 Zbl0992.14008MR1752009
  28. Hideyuki Matsumura, Commutative ring theory, 8 (1989), Cambridge University Press, Cambridge Zbl0666.13002MR1011461
  29. Barry Mazur, William Messing, Universal extensions and one dimensional crystalline cohomology, (1974), Springer-Verlag, Berlin Zbl0301.14016MR374150
  30. Barry Mazur, Ken Ribet, Two-dimensional representations in the arithmetic of modular curves, Astérisque (1991), 6, 215-255 (1992) Zbl0780.14015MR1141460
  31. Michel Raynaud, Spécialisation du foncteur de Picard, Inst. Hautes Études Sci. Publ. Math. (1970), 27-76 Zbl0207.51602MR282993
  32. Michel Raynaud, Laurent Gruson, Critères de platitude et de projectivité. Techniques de “platification” d’un module, Invent. Math. 13 (1971), 1-89 Zbl0227.14010MR308104
  33. Peter Schneider, Jeremy Teitelbaum, Banach space representations and Iwasawa theory, Israel J. Math. 127 (2002), 359-380 Zbl1006.46053MR1900706

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.