Multiple closed orbits for singular conservative systems via geodesic theory

Ugo Bessi

Rendiconti del Seminario Matematico della Università di Padova (1991)

  • Volume: 85, page 201-215
  • ISSN: 0041-8994

How to cite

top

Bessi, Ugo. "Multiple closed orbits for singular conservative systems via geodesic theory." Rendiconti del Seminario Matematico della Università di Padova 85 (1991): 201-215. <http://eudml.org/doc/108217>.

@article{Bessi1991,
author = {Bessi, Ugo},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {201-215},
publisher = {Seminario Matematico of the University of Padua},
title = {Multiple closed orbits for singular conservative systems via geodesic theory},
url = {http://eudml.org/doc/108217},
volume = {85},
year = {1991},
}

TY - JOUR
AU - Bessi, Ugo
TI - Multiple closed orbits for singular conservative systems via geodesic theory
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1991
PB - Seminario Matematico of the University of Padua
VL - 85
SP - 201
EP - 215
LA - eng
UR - http://eudml.org/doc/108217
ER -

References

top
  1. [1] S.I. Alber, On periodicity problems in the calculus of variations in the large, A.M.S. Translations, 14 (1960), pp. 107-172. Zbl0094.08202MR113234
  2. [2] A. Ambrosetti - V. Coti Zelati, Closed orbits of fixed energy for singular hamiltonian systems, Archive Rat. Mech. and Anal., to appear. Zbl0737.70008MR1077264
  3. [3] A. Ambrosetti - U. Bessi, Multiple periodic trajectories in a relativistic gravitational field, preprint S.N.S., 77 (1990). Zbl0725.34038MR1205167
  4. [4] V. Benci - F. GIANNONI, Periodic solutions of prescribed energy for a class of hamiltonian systems with singular potentials, J. Differential Equations, 82 (1989), pp. 60-70. Zbl0689.34034MR1023301
  5. [5] V. Coti Zelati - U. Bessi, Symmetries and non-collision closed orbits for planar, N-body type problems, J. Nonlinear. Analysis, to appear. Zbl0715.70016
  6. [6] F. Giannoni - M. DEGIOVANNI, Dynamical systems with newtonian type potentials, Ann. Scuola Norm. Sup. Pisa, 15 (1988), pp. 467-494. Zbl0692.34050MR1015804
  7. [7] W. Klingenberg, Lectures on Closed Geodesic, Grundlehren der Math. Wiss., 235. Zbl0397.58018
  8. [8] L. Tonelli, Sulle orbite periodiche, Rendiconti R. Accad. dei Lincei, 21-1 (1912), pp. 251-258. JFM43.0825.04

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.