Rigid meromorphic foliations on complex surfaces

E. Ballico

Rendiconti del Seminario Matematico della Università di Padova (1999)

  • Volume: 102, page 67-75
  • ISSN: 0041-8994

How to cite

top

Ballico, E.. "Rigid meromorphic foliations on complex surfaces." Rendiconti del Seminario Matematico della Università di Padova 102 (1999): 67-75. <http://eudml.org/doc/108512>.

@article{Ballico1999,
author = {Ballico, E.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {meromorphic foliation; algebraic leaf; rigidity},
language = {eng},
pages = {67-75},
publisher = {Seminario Matematico of the University of Padua},
title = {Rigid meromorphic foliations on complex surfaces},
url = {http://eudml.org/doc/108512},
volume = {102},
year = {1999},
}

TY - JOUR
AU - Ballico, E.
TI - Rigid meromorphic foliations on complex surfaces
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1999
PB - Seminario Matematico of the University of Padua
VL - 102
SP - 67
EP - 75
LA - eng
KW - meromorphic foliation; algebraic leaf; rigidity
UR - http://eudml.org/doc/108512
ER -

References

top
  1. [1] M. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc., 7 (1957), pp. 414-452; reprinted in: M. Atiyah, Collected Works, Vol. I, pp. 103-143, Oxford Science Publications, Claredon Press, Oxford (1988). Zbl0084.17305MR131423
  2. [2] D. Barlet, L'espace des feuilletages d'un espace analytique compact, Ann. Inst. Fourier, 37 (1987), pp. 117-130. Zbl0594.57015MR916276
  3. [3] W. Barth - C. Peters - A. Van De Ven, Compact Complex Surfaces, Ergebnisse der Math., B. 4, Springer-Verlag (1984). Zbl0718.14023MR749574
  4. [4] A. Beauville, Surfaces Algébriques Complexes, Asterisque54 (1978). Zbl0394.14014MR485887
  5. [5] E. Bombieri - D. MUMFORD, Enriques' classification in char. p II, in: Complex Analysis and Algebraic Geometry, Iwanami- Shoten, Tokyo (1977), pp. 23-42. Zbl0348.14021MR491719
  6. [6] J. Girbau - A. Haeflinger - D. Sundararaman, On deformations of transversally holomorphic foliations, J. Reine Angew. Math., 345 (1983), pp. 122-147. Zbl0538.32015MR717890
  7. [7] X. Gomez-Mont, The transverse dynamics of a holomorphic flow, Ann. Math., 127 (1988), pp. 49-92. Zbl0639.32013MR924673
  8. [8] X. Gomez-Mont, Holomorphic foliations in ruled surfaces, Trans. Amer. Math. Soc., 312 (1989), pp. 179-201. Zbl0669.57012MR983870
  9. [9] X. Gomez-Mont., On closed leaves of holomorphic foliations by curves, in: Algebraic Geometry and Complex Analysis, pp. 61-98, Lect. Notes in Math., 1414, Springer-Verlag (1989). Zbl0694.32012MR1042357
  10. [10] X. Gomez-Mont - G. Kempf, Stability of meromorphic vector fields in projective spaces, Comment. Math Helvetici, 64 (1989), pp. 462-473. Zbl0709.14008MR998859
  11. [11] P. Griffiths and J. Harris, PrincipLes of Algebraic Geometry, John Wiley & Sons (1978). Zbl0836.14001MR507725
  12. [12] R. Hartshorne, Stable reflexive sheaves, Math. Ann., 254 (1980), pp. 121-176. Zbl0431.14004MR597077
  13. [13] J.C. Jouanolou, Equation de Pfaff algèbriques, Lect. Notes in Math., 708, Springer-Verlag (1983). Zbl0477.58002
  14. [14] S. Kleiman, On the trasnversality of a general translate, compositio Math., 28 (1974), pp. 287-297. Zbl0288.14014MR360616
  15. [15] L.G. Mendes - M. Sebastiani, Sur la densité des systèmes de Pfaff sans solution algébriques, Ann. Inst. Fouries, 44 (1994), pp. 271-276. Zbl0792.58001MR1262888
  16. [16] G. Purcin, Deformations of singular holomorphic foliations on reduced compact C-analytic spaces, Lecture Notes in Math., 1345 (1988), pp. 246-255. Zbl0668.32021MR980962
  17. [17] G. Pourcin, Deformations of coherent foliations on a compact normal space, Ann. Inst. Fourier, 37 (1987), pp. 33-48. Zbl0587.32037MR898930
  18. [18] F. Serrano, Fibred surfaces and moduli, Duke Math. J., 67 (1992), pp. 287-297. Zbl0778.14005MR1177313

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.