Deformations of coherent foliations on a compact normal space

Geneviève Pourcin

Annales de l'institut Fourier (1987)

  • Volume: 37, Issue: 2, page 33-48
  • ISSN: 0373-0956

Abstract

top
An universal analytic structure is construted on the set of (singular) holomorphic foliations on a normal compact space. Such a foliation is by definition a coherent subsheaf of the holomorphic tangent sheaf stable by the Lie-bracket

How to cite

top

Pourcin, Geneviève. "Deformations of coherent foliations on a compact normal space." Annales de l'institut Fourier 37.2 (1987): 33-48. <http://eudml.org/doc/74756>.

@article{Pourcin1987,
abstract = {An universal analytic structure is construted on the set of (singular) holomorphic foliations on a normal compact space. Such a foliation is by definition a coherent subsheaf of the holomorphic tangent sheaf stable by the Lie-bracket},
author = {Pourcin, Geneviève},
journal = {Annales de l'institut Fourier},
keywords = {analytic space; deformations of coherent foliations; compact normal space},
language = {eng},
number = {2},
pages = {33-48},
publisher = {Association des Annales de l'Institut Fourier},
title = {Deformations of coherent foliations on a compact normal space},
url = {http://eudml.org/doc/74756},
volume = {37},
year = {1987},
}

TY - JOUR
AU - Pourcin, Geneviève
TI - Deformations of coherent foliations on a compact normal space
JO - Annales de l'institut Fourier
PY - 1987
PB - Association des Annales de l'Institut Fourier
VL - 37
IS - 2
SP - 33
EP - 48
AB - An universal analytic structure is construted on the set of (singular) holomorphic foliations on a normal compact space. Such a foliation is by definition a coherent subsheaf of the holomorphic tangent sheaf stable by the Lie-bracket
LA - eng
KW - analytic space; deformations of coherent foliations; compact normal space
UR - http://eudml.org/doc/74756
ER -

References

top
  1. [1] P. BAUM, Structure of foliation singularities, Advances in Math., 15 (1975), 361-374. Zbl0296.57007MR51 #13298
  2. [2] G. BOHNHORST and H. J. REIFFEN, Holomorphe blatterungen mit singularitäten, Math. Gottingensis, heft 5 (1985). 
  3. [3] H. CARTAN, Faisceaux analytiques cohérents, C.I.M.E., Edizioni Cremonese, 1963. Zbl0178.42701
  4. [4] A. DOUADY, Le problème des modules pour les sous-espaces analytiques..., Ann. Inst. Fourier, XVI, Fasc. 1 (1966), 1-96. Zbl0146.31103
  5. [5] B. MALGRANGE, Frobenius avec singularités-codimension 1, Pub I.H.E.S., n°46 (1976). Zbl0355.32013MR58 #22685a
  6. [6] G. POURCIN, Sous-espaces privilégiés d'un polycylindre, Ann. Inst. Fourier, XXV, Fasc. 1 (1975), 151-193. Zbl0297.32010MR52 #11118
  7. [7] Y. T. SIU et G. TRAUTMANN, Gap-sheaves and extension of coherent analytic subsheaves, Lect. Notes, 172 (1971). Zbl0208.10403MR44 #4240
  8. [8] T. SUWA, Singularities of complex analytic foliations, Proceedings of Symposia in Pure mathematics, Vol. 40 (1983), Part.2 Zbl0552.32008MR85a:32029

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.