On a functional depending on curvature and edges

Carlo-Romano Grisanti

Rendiconti del Seminario Matematico della Università di Padova (2001)

  • Volume: 105, page 139-156
  • ISSN: 0041-8994

How to cite

top

Grisanti, Carlo-Romano. "On a functional depending on curvature and edges." Rendiconti del Seminario Matematico della Università di Padova 105 (2001): 139-156. <http://eudml.org/doc/108544>.

@article{Grisanti2001,
author = {Grisanti, Carlo-Romano},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Mumford-Shah functional; image segmentation },
language = {eng},
pages = {139-156},
publisher = {Seminario Matematico of the University of Padua},
title = {On a functional depending on curvature and edges},
url = {http://eudml.org/doc/108544},
volume = {105},
year = {2001},
}

TY - JOUR
AU - Grisanti, Carlo-Romano
TI - On a functional depending on curvature and edges
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2001
PB - Seminario Matematico of the University of Padua
VL - 105
SP - 139
EP - 156
LA - eng
KW - Mumford-Shah functional; image segmentation
UR - http://eudml.org/doc/108544
ER -

References

top
  1. [1] W.K. Allard, On the first variation of a varifold, Ann. of Math., 95 (1972), pp. 417-491. Zbl0252.49028MR307015
  2. [2] W.K. Allard: On the first variation of a varifold: boundary behaviour, Ann. of Math., 101 (1975), pp. 418-446. Zbl0319.49026MR397520
  3. [3] F.J. Almgren JR., Approximation of rectifiable currents by Lipschitz Q valued functions, in Seminar on minimal submanifolds, E. Bombieri ed., Annals of mathematics studies, 103, Princeton University Press (1983), 243-259. MR795240
  4. [4] F.J. Almgren: Deformation and multiple-valued functions, in Geometric measure theory and the calculus of variations (Arcata, Calif., 1984), W. K. Allard and F. J. Almgren eds., Proc. Sympos. Pure Math. 44 Amer. Math. Soc., Providence, R.I. (1986), 29-130. Zbl0595.49028MR840268
  5. [5] F.J. Almgren - B. Super: Multiple valued functions in the geometric calculus of variations, in Variational methods for equilibrium problems of fluids (Trento, 1983), Astérisque No. 118, Société Mathématique de France (1984), 13-32. Zbl0575.49025MR761735
  6. [6] L. Ambrosio, A compactness theorem for a new class of functions of bounded variation, Boll. Un. Mat. Ital.B, 3 (1989), pp. 857-881. Zbl0767.49001MR1032614
  7. [7] L. Ambrosio - N. FUSCO - D. PALLARA, Partial regularity of free discontinuity sets, II, Ann. Sc. Norm. Sup. Pisa Cl. Sci., 24, no. 1 (1997), pp. 39-62. Zbl0896.49024MR1475772
  8. [8] L. Ambrosio - N. Fusco - D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford University Press (to appear). Zbl0957.49001MR1857292
  9. [9] L. Ambrosio - M. GOBBINO - D. PALLARA, Approximation problems for curvature varifolds, The Journal of GeometricAnalysis, 8, no. 1 (1998). Zbl0932.58013MR1704565
  10. [10] L. Ambrosio - V. M. TORTORELLI, Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence, Comm. Pure Appl. Math., 43, no. 8 (1990), pp. 999-1036. Zbl0722.49020
  11. [11] G. Bellettini - G. Dal Maso - M. Paolini, Semicontinuity and relaxation properties of a curvature depending functional in 2d, Ann. Scuola Norm. Sup. Pisa Cl. Sc., 20, no. 2 (1993), pp. 247-297. Zbl0797.49013MR1233638
  12. [12] A. Coscia, On curvature sensitive image segmentation, Non Linear Analysis T.M.A. (to appear). Zbl0942.68135MR1733124
  13. [13] G. David, C1 arcs for the minimizers of the Mumford-Shah functional, SIAM J. Appl. Math., 56, no. 3 (1996), pp. 783-888. Zbl0870.49020MR1389754
  14. [14] G. David - S. Semmes, On the singular set of minimizers of the Mumford-Shah functional, J. Math. Pures Appl., 75, no. 4 (1996), pp. 229-342. Zbl0853.49010MR1411155
  15. [15] E. De Giorgi, Free discontinuity problems in calculus of variations, in Frontiers of pure and applied mathematics, a collection of papers dedicated to J. L. Lions on the occasion of his 60th birthday, R. Dautray ed., North-Holland, Amsterdam (1991), 55-62. Zbl0758.49002MR1110593
  16. [16] E. De Giorgi, Introduzione ai problemi con discontinuità libere, in Symmetry in nature: a volume in honour of L. A. Radicati di Brozolo, I, Scuola Normale Superiore, Pisa (1989), 265-285. Zbl0742.49001
  17. [17] L.C. Evans - R.F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. Zbl0804.28001MR1158660
  18. [18] H. Federer, Geometric measure theory, Springer, Berlin (1969). Zbl0874.49001MR257325
  19. [19] J.M. Gauch - H.H. PIEN - J. SHAH, Hybrid boundary-based and region-based deformable models for biomedical image segmentation, SPIE Vol. 2299 (1994), pp. 72-83. 
  20. [20] C.R. Grisanti, Lipschitz selections for multiple valued functions, preprint Dipartimento Metodi e Modelli Matematici per le Scienze Applicate, Roma (1999). 
  21. [21] C.R. Grisanti - R. Schianchi, A criterion for the image segmentation in the framework of the varifolds theory, preprint n. 2 - 1999, Dipartimento Metodi e Modelli Matematici per le Scienze Applicate, Roma (1999). 
  22. [22] J.E. Hutchinson, C1,α multiple function regularity and tangent cone behaviour for varifolds with second fundamental form in LP, in Geometric measure theory and the calculus of variations (Arcata, Calif., 1984), W. K. Allard and F. J. Almgren eds., Proc. Symp. Pure Math. 44 Ann. Math. Soc., Providence (1986), 281-306. Zbl0635.49020
  23. [23] J.E. Hutchinson, Second fundamental form for varifold and the existence of surfaces minimizing curvature, Indiana Univ. Math. J., 35, no. 1 (1986), pp. 45-71. Zbl0561.53008MR825628
  24. [24] C. Mantegazza, Su alcune definizioni deboli di curvatura per insiemi non orientati, Tesi di laurea Univ. di Pisa, a.a. 1992/93. 
  25. [25] C. Mantegazza, Curvature Varifolds with boundary, J. Differential Geom., 43, no. 4 (1996), pp. 807-843. Zbl0865.49030MR1412686
  26. [26] D. Mumford - J. SHAH, Optimal approximation by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math., 42, no. 5 (1989), 577-685. Zbl0691.49036MR997568
  27. [27] R. March, Visual reconstruction with discontinuities using variational methods, Image and Vision Computing, 10 (1992), pp. 30-38. 
  28. [28] L. Simon, Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, 3. Australian National University, Centre for Mathematical Analysis, Canberra, 1983. Zbl0546.49019MR756417

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.