Fonctions zêta des hauteurs
- [1] Institut de Mathématiques de Jussieu UMR 7586, Case 7012 Université Paris 7 – Denis Diderot 2, place Jussieu F-75251 Paris cedex 05
Journal de Théorie des Nombres de Bordeaux (2009)
- Volume: 21, Issue: 1, page 77-95
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topde la Bretèche, Régis. "Fonctions zêta des hauteurs." Journal de Théorie des Nombres de Bordeaux 21.1 (2009): 77-95. <http://eudml.org/doc/10877>.
@article{delaBretèche2009,
abstract = {Ce papier présente les récents progrès concernant les fonctions zêta des hauteurs associées à la conjecture de Manin. En particulier, des exemples où on peut prouver un prolongement méromorphe de ces fonctions sont détaillés.},
affiliation = {Institut de Mathématiques de Jussieu UMR 7586, Case 7012 Université Paris 7 – Denis Diderot 2, place Jussieu F-75251 Paris cedex 05},
author = {de la Bretèche, Régis},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Height zeta function; Manin’s Conjecture; Cubic surfaces; Natural Boundary; height; zeta function; rational points; Manin's conjecture; Diophantine equations; cubic surfaces},
language = {fre},
number = {1},
pages = {77-95},
publisher = {Université Bordeaux 1},
title = {Fonctions zêta des hauteurs},
url = {http://eudml.org/doc/10877},
volume = {21},
year = {2009},
}
TY - JOUR
AU - de la Bretèche, Régis
TI - Fonctions zêta des hauteurs
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2009
PB - Université Bordeaux 1
VL - 21
IS - 1
SP - 77
EP - 95
AB - Ce papier présente les récents progrès concernant les fonctions zêta des hauteurs associées à la conjecture de Manin. En particulier, des exemples où on peut prouver un prolongement méromorphe de ces fonctions sont détaillés.
LA - fre
KW - Height zeta function; Manin’s Conjecture; Cubic surfaces; Natural Boundary; height; zeta function; rational points; Manin's conjecture; Diophantine equations; cubic surfaces
UR - http://eudml.org/doc/10877
ER -
References
top- S. J. Arakelov, Theory of intersections on the arithmetic surface. Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974), Vol. 1, 405–408. Canad. Math. Congress, Montreal, Que., 1975. Zbl0351.14003MR466150
- V.V. Batyrev, Y.I. Manin, Sur les points rationnels de hauteur bornée des variétés algébriques. Math. Ann. 286 (1990), 27–43. Zbl0679.14008MR1032922
- V.V. Batyrev, Y. Tschinkel, Rational points of bounded height on compactifications of anisotropic toric. Internat. Math. Res. Notices 12 (1995), 591–635. Zbl0890.14008MR1369408
- V.V. Batyrev, Y. Tschinkel, Height Zeta functions of Toric Varieties, Algebraic geometry 5, Manin’s Festschrift. J. Math. Sci. 82 (1996), n 1, 3220–3239. Zbl0915.14013MR1423638
- V.V. Batyrev, Y. Tschinkel, Manin’s Conjecture for Toric Varieties. J. of Algebraic Geometry 7 (1998), 15–53. Zbl0946.14009MR1620682
- V.V. Batyrev, Y. Tschinkel, Tamagawa numbers of polarized algebraic varieties. Astérisque 251 (1998), 299–340. Zbl0926.11045MR1679843
- G. Bhowmik, D. Essouabri, B. Lichtin, Meromorphic Continuation of Multivariable Euler Products and Applications. ArXiv math.NT/0502508, à paraître à Forum Math. Zbl1181.11057MR2367957
- G. Bhowmik, J.-C. Schlage-Puchta, Natural boundaries of Dirichlet series. Functiones et Approximatio 37 (2007), 17–29. Zbl1146.30002MR2357306
- R. de la Bretèche, Sur le nombre de points de hauteur bornée d’une certaine surface cubique singulière. Astérisque 251 (1998), 51–77. Zbl0969.14014MR1679839
- R. de la Bretèche, Compter des points sur des variétés toriques. Journal of Number Theory 87 (2001), n 2, 315–331. Zbl1020.11045MR1824152
- R. de la Bretèche, Nombre de points de hauteur bornée sur les surfaces de del Pezzo de degré 5. Duke Math. J. 113 (2002), n 3, 421–464. Zbl1054.14025MR1909606
- R. de la Bretèche, T.D. Browning, On Manin’s conjecture for singular del Pezzo surfaces of degree four, I. Michigan Mathematical Journal 55 (2007), 51–80. Zbl1132.14019MR2320172
- R. de la Bretèche, T.D. Browning, On Manin’s conjecture for singular del Pezzo surfaces of degree four, II. Math. Proc. Camb. Phil. Soc., à paraître. Zbl1132.14020
- R. de la Bretèche, T.D. Browning, U. Derenthal, On Manin’s conjecture for a certain singular cubic surface. Annales scientifiques de l’ENS, -ème série, 40 (2007), 1–50. Zbl1125.14008MR2332351
- R. de la Bretèche, É. Fouvry, L’éclaté du plan projectif en quatre points dont deux conjugués. J. reine angew. Math. 576 (2004), 63–122. Zbl1065.11080MR2099200
- R. de la Bretèche, Sir P. Swinnerton-Dyer, Fonction zêta des hauteurs associée à une certaine surface cubique. Bulletin de la SMF 135 (2007), 65–92. Zbl1207.11068MR2430199
- T.D. Browning, The density of rational points on a certain singular cubic surface. J. Number Theory 119 (2006), 242–283. Zbl1119.11034MR2250046
- T.D. Browning, An overview of Manin’s conjecture for del Pezzo surfaces. Analytic number theory - A tribute to Gauss and Dirichlet (Goettingen, 20th June - 24th June, 2005), Clay Mathematics Proceedings 7 (2007), 39–56. Zbl1134.14017MR2362193
- A. Chambert-Loir, Y. Tschinkel, Yuri Points of bounded height on equivariant compactifications of vector groups, I Compositio Math. 124 (2000), no. 1, 65–93. Zbl0963.11033MR1797654
- A. Chambert-Loir, Y. Tschinkel, Points of bounded height on equivariant compactifications of vector groups, II. J. Number Theory 85 (2000), no. 2, 172–188. Zbl0963.11034MR1802710
- A. Chambert-Loir, Y. Tschinkel, Fonctions zêta des hauteurs des espaces fibrés. Rational points on algebraic varieties, 71–115, Progr. Math. 199, Birkhäuser, Basel, 2001. Zbl1077.14524MR1875171
- A. Chambert-Loir, Y. Tschinkel, On the distribution of points of bounded height on equivariant compactifications of vector groups. Invent. Math. 148 (2002), 421–452. Zbl1067.11036MR1906155
- J.-L. Colliot-Thélène, J.-J. Sansuc, La descente sur les variétés rationnelles. Journée de géométrie algébrique d’Angers (1979) (A. Beauville, ed.) Sijthoff, Noordhoff, Alphen aan den Rijn, 1980, 223–237. Zbl0451.14018MR605344
- J.-L. Colliot-Thélène, J.-J. Sansuc, La descente sur les variétés rationnelles, II. Duke Math. J. 54 (1987), no 2, 375–492. Zbl0659.14028MR899402
- U. Derenthal, Manin’s conjecture for a cubic surface. ArXiv :math.NT/0504016, (2005).
- U. Derenthal, Y. Tschinkel, Universal torsors over Del Pezzo surfaces and rational points. « Equidistribution in Number theory, An Introduction », (A. Granville, Z. Rudnick eds.), 169–196, NATO Science Series II 237, Springer, (2007). Zbl1143.14017MR2290499
- D. Essouabri, Prolongements analytiques d’une classe de fonction zêta des hauteurs et applications. Bull. Soc. Math. France 133 (2) (2005), 297–329. Zbl1081.14031MR2172269
- E. Fouvry, Sur la hauteur des points d’une certaine surface cubique singulière. Astérisque 251 (1998), 31–49. Zbl0930.11044MR1679838
- T. Estermann, On certain functions represented by Dirichlet series. Proc. London Math. Soc. 27 (1928), 433–448. Zbl54.0366.03
- J. Franke, Y.I. Manin, Y. Tschinkel, Rational points of bounded height on Fano varieties. Invent. Math. 95 (1989), 421–435. Zbl0674.14012MR974910
- A. Gorodnik, F. Maucourant, H. Oh, Manin’s conjecture on rational points of bounded height and adelic mixing. Annales scientifiques de l’École Normale Supérieure, série 4, 41, fascicule 3 (2008), 385–437. Zbl1161.14015MR2482443
- B. Hassett, Y. Tschinkel, Universal torsors and Cox rings. Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002), 149–173, Progr. Math. 226, Birkhäuser, 2004. Zbl1077.14046MR2029868
- R. Heath-Brown, The density of rational points on cubic surfaces. Acta Arith. 19 (1997), 17–30. Zbl0863.11021MR1438113
- R. Heath-Brown, B.Z. Moroz, The density of Rational Points on the cubic surface . Math. Proc. Camb. Phil. Soc. 125 (1999), n 3, 385–395. Zbl0938.11016MR1656797
- M. N. Huxley, Exponential sums and the Riemann zeta function, V. Proc. London Math. Soc. (3) 90 (2005), no. 1, 1–41. Zbl1083.11052MR2107036
- A. Ivić, The Riemann zeta-function. John Wiley, Sons Inc., New York, (1985). Zbl0556.10026MR792089
- H. Iwaniec, C.J. Mozzochi, On the divisor and circle problems, J. Number Theory 29 (1988), no. 1, 60–93. Zbl0644.10031MR938870
- N. Kurokawa, On the meromorphy of Euler products, I and II. Proc. London Math. Soc. (3) 53 (1986), no. 1, 1–47 and 209–236. Zbl0595.10031MR842154
- Y. Manin, Y. Tschinkel, Points of bounded height on del Pezzo surfaces. Compositio Math. 85 (1993), n 3, 315–332. Zbl0782.14033MR1214451
- E. Peyre, Hauteurs et nombres de Tamagawa sur les variétés de Fano. Duke Math. J. 79 (1995), 101–218. Zbl0901.14025MR1340296
- E. Peyre, Terme principal de la fonction zêta des hauteurs et torseurs universels. Astérisque 251 (1998), 259–298. Zbl0966.14016MR1679842
- E. Peyre, Points de hauteur bornée et géométrie des variétés (d’après Y. Manin et al.). Séminaire Bourbaki, Vol. 2000/2001. Astérisque 282 (2002), Exp. n 891, ix, 323–344. Zbl1039.11045MR1975184
- E. Peyre, Points de hauteur bornée, topologie adélique et mesures de Tamagawa. Les XXIIèmes Journées Arithmetiques (Lille, 2001), J. Théor. Nombres Bordeaux 15 (2003), n 1, 319–349. Zbl1057.14031MR2019019
- E. Peyre, Counting points on varieties using universal torsors. Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002), 61–81, Progr. Math. 226, Birkhäuser Boston, Boston, MA, 2004. Zbl1201.11068MR2029862
- P. Salberger, Tamagawa measures on universal torsors and points of bounded height on Fano varieties. Astérisque 251 (1998), 91–258. Zbl0959.14007MR1679841
- M. du Sautoy, Zeta Functions of Groups and Natural Boundaries. Preprint 2000, 79 pages. Zbl1188.11047MR1765124
- J.A. Shalika, Y. Tschinkel, Height zeta functions of equivariant compactifications of the Heisenberg group. Contributions to automorphic forms, geometry, and number theory, 743–771, Johns Hopkins Univ. Press, Baltimore, MD, 2004. Zbl1182.14013MR2058627
- J.A. Shalika, R. Takloo-Bighash, Y. Tschinkel, Rational points on compactifications of semi-simple groups of rank 1. Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002), 205–233, Progr. Math. 226, Birkhüser Boston, Boston, MA, 2004. Zbl1211.11080MR2029871
- M. Strauch, Y. Tschinkel, Height zeta functions of twisted products. Math. Res. Lett. 4 (1997), n 2-3, 273–282. Zbl0918.11036MR1453059
- M. Strauch, Y. Tschinkel, Height zeta functions of toric bundles over flag varieties. Selecta Math. (N.S.) 5 (1999), n 3, 325–396. Zbl1160.14302MR1723811
- Sir P. Swinnerton-Dyer, Counting points on cubic surfaces II. Geometric methods in algebra and number theory, (Eds. F. Bogomolov and Y. Tschinkel), Progress in Mathematics 235, Birkhäuser, 2004. Zbl1127.11043MR2166089
- G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres. Cours spécialisés, n 1, Société Mathématique de France (1995), xv + 457 pp. Zbl0880.11001MR1366197
- E.C. Titchmarsh, The theory of the Riemann zeta-function. 2nd ed., revised by D.R. Heath-Brown. Oxford University Press, 1986. Zbl0601.10026MR882550
- Y. Tschinkel, Lectures on height zeta functions of toric varieties. Geometry of toric varieties, 227–247, Sémin. Congr. 6, Soc. Math. France, Paris, 2002. Zbl1064.14018MR2075613
- Y. Tschinkel, Fujita’s program and rational points. “Higher Dimensional Varieties and Rational Points”, (K. J. Böröczky, J. Kollár, T. Szamuely eds.), Bolyai Society Mathematical Studies 12, Springer Verl., 2003, 283–310. Zbl1112.14021MR2011749
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.