Estimates on the number of scattering poles near the real axis for strictly convex obstacles
Johannes Sjöstrand; Maciej Zworski
Annales de l'institut Fourier (1993)
- Volume: 43, Issue: 3, page 769-790
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topSjöstrand, Johannes, and Zworski, Maciej. "Estimates on the number of scattering poles near the real axis for strictly convex obstacles." Annales de l'institut Fourier 43.3 (1993): 769-790. <http://eudml.org/doc/75019>.
@article{Sjöstrand1993,
abstract = {For the Dirichlet Laplacian in the exterior of a strictly convex obstacle, we show that the number of scattering poles of modulus $\le r$ in a small angle $\theta $ near the real axis, can be estimated by Const $\theta ^\{3/2\}r^n$ for $r$ sufficiently large depending on $\theta $. Here $n$ is the dimension.},
author = {Sjöstrand, Johannes, Zworski, Maciej},
journal = {Annales de l'institut Fourier},
keywords = {resonance; complex scaling; semiclassical problem; Dirichlet Laplacian; exterior of a strictly convex obstacle; scattering poles},
language = {eng},
number = {3},
pages = {769-790},
publisher = {Association des Annales de l'Institut Fourier},
title = {Estimates on the number of scattering poles near the real axis for strictly convex obstacles},
url = {http://eudml.org/doc/75019},
volume = {43},
year = {1993},
}
TY - JOUR
AU - Sjöstrand, Johannes
AU - Zworski, Maciej
TI - Estimates on the number of scattering poles near the real axis for strictly convex obstacles
JO - Annales de l'institut Fourier
PY - 1993
PB - Association des Annales de l'Institut Fourier
VL - 43
IS - 3
SP - 769
EP - 790
AB - For the Dirichlet Laplacian in the exterior of a strictly convex obstacle, we show that the number of scattering poles of modulus $\le r$ in a small angle $\theta $ near the real axis, can be estimated by Const $\theta ^{3/2}r^n$ for $r$ sufficiently large depending on $\theta $. Here $n$ is the dimension.
LA - eng
KW - resonance; complex scaling; semiclassical problem; Dirichlet Laplacian; exterior of a strictly convex obstacle; scattering poles
UR - http://eudml.org/doc/75019
ER -
References
top- [M1] R. MELROSE, Polynomial bounds on the number of scattering poles, J. Funct. An., 53 (1983), 287-303. Zbl0535.35067MR85k:35180
- [M2] R. MELROSE, Polynomial bounds on the distribution of poles in scattering by an obstacle, Journées équations aux dérivées partielles, Saint Jean de Monts (1984) (published by Centre de Mathématiques, École Polytechnique, Palaiseau, France). Zbl0621.35073
- [R] D. ROBERT, Autour de l'approximation semi-classique, Progress in Math., vol. 68, Birkhäuser (1987). Zbl0621.35001MR89g:81016
- [O] F.W.J. OLVER, The asymptotic expansions of Bessel functions of large order, Phil. Trans. Roy. Soc. London, Ser. A, 247 (1954), 328-368. Zbl0070.30801MR16,696a
- [S] J. SJÖSTRAND, Geometric bounds on the density of resonances for semi-classical problems, Duke Mathematical Journal, 61 (1) (1990), 1-57. Zbl0702.35188
- [SZ1] J. SJÖSTRAND, M. ZWORSKI, Complex scaling and the distribution of scattering poles, Journal of the AMS, 4 (4) (1991), 729-769. Zbl0752.35046MR92g:35166
- [SZ2] J. SJÖSTRAND, M. ZWORSKI, Distribution of scattering poles near the real axis, Comm. P.D.E., 17 (5 & 6) (1992), 1021-1035. Zbl0766.35031MR93h:35152
- [V] G. VODEV, Sharp bounds on the number of scattering poles for perturbations of the Laplacian, Comm. Math. Phys., 146 (1992), 205-216. Zbl0766.35032MR93f:35173
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.