Estimates on the number of scattering poles near the real axis for strictly convex obstacles

Johannes Sjöstrand; Maciej Zworski

Annales de l'institut Fourier (1993)

  • Volume: 43, Issue: 3, page 769-790
  • ISSN: 0373-0956

Abstract

top
For the Dirichlet Laplacian in the exterior of a strictly convex obstacle, we show that the number of scattering poles of modulus r in a small angle θ near the real axis, can be estimated by Const θ 3 / 2 r n for r sufficiently large depending on θ . Here n is the dimension.

How to cite

top

Sjöstrand, Johannes, and Zworski, Maciej. "Estimates on the number of scattering poles near the real axis for strictly convex obstacles." Annales de l'institut Fourier 43.3 (1993): 769-790. <http://eudml.org/doc/75019>.

@article{Sjöstrand1993,
abstract = {For the Dirichlet Laplacian in the exterior of a strictly convex obstacle, we show that the number of scattering poles of modulus $\le r$ in a small angle $\theta $ near the real axis, can be estimated by Const $\theta ^\{3/2\}r^n$ for $r$ sufficiently large depending on $\theta $. Here $n$ is the dimension.},
author = {Sjöstrand, Johannes, Zworski, Maciej},
journal = {Annales de l'institut Fourier},
keywords = {resonance; complex scaling; semiclassical problem; Dirichlet Laplacian; exterior of a strictly convex obstacle; scattering poles},
language = {eng},
number = {3},
pages = {769-790},
publisher = {Association des Annales de l'Institut Fourier},
title = {Estimates on the number of scattering poles near the real axis for strictly convex obstacles},
url = {http://eudml.org/doc/75019},
volume = {43},
year = {1993},
}

TY - JOUR
AU - Sjöstrand, Johannes
AU - Zworski, Maciej
TI - Estimates on the number of scattering poles near the real axis for strictly convex obstacles
JO - Annales de l'institut Fourier
PY - 1993
PB - Association des Annales de l'Institut Fourier
VL - 43
IS - 3
SP - 769
EP - 790
AB - For the Dirichlet Laplacian in the exterior of a strictly convex obstacle, we show that the number of scattering poles of modulus $\le r$ in a small angle $\theta $ near the real axis, can be estimated by Const $\theta ^{3/2}r^n$ for $r$ sufficiently large depending on $\theta $. Here $n$ is the dimension.
LA - eng
KW - resonance; complex scaling; semiclassical problem; Dirichlet Laplacian; exterior of a strictly convex obstacle; scattering poles
UR - http://eudml.org/doc/75019
ER -

References

top
  1. [M1] R. MELROSE, Polynomial bounds on the number of scattering poles, J. Funct. An., 53 (1983), 287-303. Zbl0535.35067MR85k:35180
  2. [M2] R. MELROSE, Polynomial bounds on the distribution of poles in scattering by an obstacle, Journées équations aux dérivées partielles, Saint Jean de Monts (1984) (published by Centre de Mathématiques, École Polytechnique, Palaiseau, France). Zbl0621.35073
  3. [R] D. ROBERT, Autour de l'approximation semi-classique, Progress in Math., vol. 68, Birkhäuser (1987). Zbl0621.35001MR89g:81016
  4. [O] F.W.J. OLVER, The asymptotic expansions of Bessel functions of large order, Phil. Trans. Roy. Soc. London, Ser. A, 247 (1954), 328-368. Zbl0070.30801MR16,696a
  5. [S] J. SJÖSTRAND, Geometric bounds on the density of resonances for semi-classical problems, Duke Mathematical Journal, 61 (1) (1990), 1-57. Zbl0702.35188
  6. [SZ1] J. SJÖSTRAND, M. ZWORSKI, Complex scaling and the distribution of scattering poles, Journal of the AMS, 4 (4) (1991), 729-769. Zbl0752.35046MR92g:35166
  7. [SZ2] J. SJÖSTRAND, M. ZWORSKI, Distribution of scattering poles near the real axis, Comm. P.D.E., 17 (5 & 6) (1992), 1021-1035. Zbl0766.35031MR93h:35152
  8. [V] G. VODEV, Sharp bounds on the number of scattering poles for perturbations of the Laplacian, Comm. Math. Phys., 146 (1992), 205-216. Zbl0766.35032MR93f:35173

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.