Effets dispersifs dans les équations de Schrödinger et de Vlasov

François Castella[1]

  • [1] Université Pierre et Marie Curie, Laboratoire d’analyse numérique, Tour 55/56, 4 place Jussieu, 75252 Paris Cedex 05

Séminaire Équations aux dérivées partielles (1997-1998)

  • Volume: 1997-1998, page 1-14

How to cite

top

Castella, François. "Effets dispersifs dans les équations de Schrödinger et de Vlasov." Séminaire Équations aux dérivées partielles 1997-1998 (1997-1998): 1-14. <http://eudml.org/doc/10951>.

@article{Castella1997-1998,
affiliation = {Université Pierre et Marie Curie, Laboratoire d’analyse numérique, Tour 55/56, 4 place Jussieu, 75252 Paris Cedex 05},
author = {Castella, François},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {Schrödinger-Poisso equations; kinetic equations; Strichartz estimates; Vlasov-Poisson-Fokker-Planck system},
language = {fre},
pages = {1-14},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Effets dispersifs dans les équations de Schrödinger et de Vlasov},
url = {http://eudml.org/doc/10951},
volume = {1997-1998},
year = {1997-1998},
}

TY - JOUR
AU - Castella, François
TI - Effets dispersifs dans les équations de Schrödinger et de Vlasov
JO - Séminaire Équations aux dérivées partielles
PY - 1997-1998
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 1997-1998
SP - 1
EP - 14
LA - fre
KW - Schrödinger-Poisso equations; kinetic equations; Strichartz estimates; Vlasov-Poisson-Fokker-Planck system
UR - http://eudml.org/doc/10951
ER -

References

top
  1. A.Arnold, Self-consistent relaxation-time models in quantum mechanics, Comm. PDE, Vol. 21, 473-506 (1996). Zbl0849.35113MR1387456
  2. C. Bardos, P. Degond, Global existence for the Vlasov-Poisson Equation in 3 space variables with small initial data, Ann. Inst. H. Poincaré, Anal. Non Lineaire 2, 101–118 (1985). Zbl0593.35076MR794002
  3. F. Bouchut, Existence and Uniqueness of a Global Smooth Solution for the Vlasov-Poisson-Fokker-Planck System in Three Dimensions, J. Funct. Anal., Vol. 111, 239-258 (1993). Zbl0777.35059MR1200643
  4. F. Bouchut, Smoothing effect for the non-linear Vlasov-Poisson-FokkerPlanck System, J. Diff. Eq.,122, 225-238 (1995). Zbl0840.35053MR1355890
  5. F. Brezzi, P.A. Markowich, The three-dimensional Wigner-Poisson problem : existence, uniqueness and approximation, Math. Meth. Appl. Sci., 14, p. 35-62 (1991). Zbl0739.35080MR1087449
  6. F. Castella, L 2 solutions to the Schrodinger-Poisson system, Math. Meth. Mod. Appl. Sci., Vol. 7, N. 8, p. 1051-1083 (1997). 11 Zbl0892.35141MR1487521
  7. F. Castella, B. Perthame, Estimations de Strichartz pour les equations de transport cinetique, C. R. Acad. Sci. Paris, t. 322, Ser. I, p. 535-540 (1996). Zbl0848.35095MR1383431
  8. F. Castella, Propagation of space moments in the Vlasov-Poisson equation, a paraître dans Ann. IHP. Anal. Nonlin. (1998). Zbl1011.35034
  9. F. Castella, Infinite kinetic energy solutions for the Vlasov-Poisson-FokkerPlanck System, a paraître dans Indiana Univ. Math. J. (1998). MR1665725
  10. T. Cazenave, An introduction to nonlinear Schrödinger Equations, Second Edition, Textos de Metodos Matematicas 26, Universidade Federal do Rio de Janeiro (1993). 
  11. J.A. Carillo, J. Soler, On the Vlasov-Poisson-Fokker-Planck equation with measures in Morrey spaces as initial data, Zbl0876.35085
  12. Th. Colin, Smoothing effects for dispersive equations via a generalized Wigner transform, SIAM J. Math. Anal., Vol. 25, No 6, p. 1622-1641 (1994). Zbl0809.35089MR1302166
  13. R.J. Di Perna, P.L. Lions, Solutions globales d’équations du type Vlasov-Poisson, C. R. Acad. Sci. Paris, Vol. 307, 655-658 (1988). Zbl0682.35022
  14. P. Gerard, P.A. Markowich, N.J.Mauser, F. Poupaud, Homogenization limits and Wigner transforms, Comm. Pure Appl. Math., Vol. 50, N. 4, p. 323-379 (1997). Zbl0881.35099MR1438151
  15. J. Ginibre, G. Velo, The global Cauchy problem for some nonlinear Schrödinger equation revisited, Ann. Inst. H. Poincaré, Analyse nonlineaire 2, 309-327 (1985). Zbl0586.35042MR801582
  16. E. Horst, R. Hunze, Weak solutions of the initial value problem for the unmodified nonlinear Vlasov equation, Math. Meth. Appl. Sci., Vol. 6, 262-279 (1984). Zbl0556.35022MR751745
  17. N. Hayashi, T. Ozawa, Smoothing Effect for Some Schrödinger Equations, J. Funct. Anal., 85, p. 307-348, (1989). Zbl0681.35079MR1012208
  18. L. Hörmander, The Analysis of Linear Partial Differential Operators, Vol. I, Springer Verlag, New-York-Berlin (1983). Zbl0521.35002
  19. L. Hörmander, Hypoelliptic second order differential equations, Acta Math., Vol. 119, 147-171 (1967). 12 Zbl0156.10701MR222474
  20. R. Illner, H. Lange, P. Zweifel, Global existence, uniqueness and asymptotic behaviour of solutions of the Wigner-Poisson and Schrödinger systems, Math. Meth. Appl. Sci., Vol.17, 349-376 (1994). Zbl0808.35116MR1273317
  21. R. Illner, H. Neunzert, An existence theorem for the unmodified Vlasov equation, Math. Meth. Appl. Sci., Vol. 1, 530-540 (1979). Zbl0415.35076MR548686
  22. P.L. Lions, Th. Paul, Sur les mesures de Wigner, Rev. Mat. Iberoam., Vol. 9, Num. 3, 553-618 (1993). Zbl0801.35117MR1251718
  23. P.L. Lions, B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Invent. Math., Vol. 105, 415-430 (1991). Zbl0741.35061MR1115549
  24. P.L. Lions, B. Perthame, Lemmes de moments, de moyenne et de dispersion, C. R. Acad. Sci. Paris, Vol. 314, 801-806 (1992). Zbl0761.35085MR1166050
  25. P.A. Markowich, N. Mauser, F. Poupaud, A Wigner function approach to (semi) classical limits : electrons in a periodic potential, J. Math. Phys., Vol. 35, N. 3, p. 1066-1094 (1994). Zbl0805.35106MR1262733
  26. F. Nier, A semi-classical picture of quantum scattering, Ann. Sci. Ec. Norm. Sup., 4. Ser., t. 29, p. 149-183 (1996). Zbl0858.35106MR1373932
  27. B. Perthame, Time decay, Propagation of Low Moments and Dispersive Effects for Kinetic Equations, Comm. PDE, Vol. 21, 659-686 (1996). Zbl0852.35139MR1387464
  28. B. Perthame, S. Mischler, Solutions of the Boltzmann equation with infinite energy, SIAM J. Math. Anal., Vol. 28, N. 5, 1015-1027 (1997). Zbl0889.35077MR1466666
  29. K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Diff. Eq., 95, 281-303 (1992). Zbl0810.35089MR1165424
  30. G. Rein, growth estimates for the solutions of the Vlasov-Poisson system in the plasma physics case, to appear in Math. Nachrichten. Zbl0937.76096MR1621318
  31. G. Rein, J. Weckler, Generic global classical solutions of the Vlasov-Fokker-Planck-Poisson system in three dimensions, J. Diff. Eq., Vol. 95, 281-303 (1992). Zbl0810.35090MR1165424
  32. J. Schaeffer, Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions, Comm. PDE., Vol. 16, N. 8-9, 1313-1335 (1991). Zbl0746.35050MR1132787
  33. R.S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44, p. 705-714 (1977). 13 Zbl0372.35001MR512086
  34. Y. Tsutsumi, L 2 -Solutions for Nonlinear Schrödinger Equations and Nonlinear Groups, Funk. Ekva., 30, p. 115-125 (1987). Zbl0638.35021MR915266
  35. H.D. Victory, B.P. O’Dwyer, On classical solutions of Vlasov-PoissonFokker-Planck systems, Indiana Univ. Math. J., Vol. 39, 105-157 (1990). Zbl0674.60097
  36. E.P. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev., Vol. 40 (1932). Zbl0004.38201
  37. K. Yajima, Existence of Solutions for Schrödinger evolution Equations, Commun. Math. Phys., 110, p. 415-426 (1987). Zbl0638.35036MR891945
  38. S. Zagatti, The Cauchy problem for Hartree-Fock time dependent equations, Ann. Inst. H. Poincaré, Phys. Th., Vol. 56, N. 4, 357-374 (1992). Zbl0763.35089MR1175475

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.