Effets dispersifs dans les équations de Schrödinger et de Vlasov
- [1] Université Pierre et Marie Curie, Laboratoire d’analyse numérique, Tour 55/56, 4 place Jussieu, 75252 Paris Cedex 05
Séminaire Équations aux dérivées partielles (1997-1998)
- Volume: 1997-1998, page 1-14
Access Full Article
topHow to cite
topCastella, François. "Effets dispersifs dans les équations de Schrödinger et de Vlasov." Séminaire Équations aux dérivées partielles 1997-1998 (1997-1998): 1-14. <http://eudml.org/doc/10951>.
@article{Castella1997-1998,
affiliation = {Université Pierre et Marie Curie, Laboratoire d’analyse numérique, Tour 55/56, 4 place Jussieu, 75252 Paris Cedex 05},
author = {Castella, François},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {Schrödinger-Poisso equations; kinetic equations; Strichartz estimates; Vlasov-Poisson-Fokker-Planck system},
language = {fre},
pages = {1-14},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Effets dispersifs dans les équations de Schrödinger et de Vlasov},
url = {http://eudml.org/doc/10951},
volume = {1997-1998},
year = {1997-1998},
}
TY - JOUR
AU - Castella, François
TI - Effets dispersifs dans les équations de Schrödinger et de Vlasov
JO - Séminaire Équations aux dérivées partielles
PY - 1997-1998
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 1997-1998
SP - 1
EP - 14
LA - fre
KW - Schrödinger-Poisso equations; kinetic equations; Strichartz estimates; Vlasov-Poisson-Fokker-Planck system
UR - http://eudml.org/doc/10951
ER -
References
top- A.Arnold, Self-consistent relaxation-time models in quantum mechanics, Comm. PDE, Vol. 21, 473-506 (1996). Zbl0849.35113MR1387456
- C. Bardos, P. Degond, Global existence for the Vlasov-Poisson Equation in 3 space variables with small initial data, Ann. Inst. H. Poincaré, Anal. Non Lineaire 2, 101–118 (1985). Zbl0593.35076MR794002
- F. Bouchut, Existence and Uniqueness of a Global Smooth Solution for the Vlasov-Poisson-Fokker-Planck System in Three Dimensions, J. Funct. Anal., Vol. 111, 239-258 (1993). Zbl0777.35059MR1200643
- F. Bouchut, Smoothing effect for the non-linear Vlasov-Poisson-FokkerPlanck System, J. Diff. Eq.,122, 225-238 (1995). Zbl0840.35053MR1355890
- F. Brezzi, P.A. Markowich, The three-dimensional Wigner-Poisson problem : existence, uniqueness and approximation, Math. Meth. Appl. Sci., 14, p. 35-62 (1991). Zbl0739.35080MR1087449
- F. Castella, solutions to the Schrodinger-Poisson system, Math. Meth. Mod. Appl. Sci., Vol. 7, N. 8, p. 1051-1083 (1997). 11 Zbl0892.35141MR1487521
- F. Castella, B. Perthame, Estimations de Strichartz pour les equations de transport cinetique, C. R. Acad. Sci. Paris, t. 322, Ser. I, p. 535-540 (1996). Zbl0848.35095MR1383431
- F. Castella, Propagation of space moments in the Vlasov-Poisson equation, a paraître dans Ann. IHP. Anal. Nonlin. (1998). Zbl1011.35034
- F. Castella, Infinite kinetic energy solutions for the Vlasov-Poisson-FokkerPlanck System, a paraître dans Indiana Univ. Math. J. (1998). MR1665725
- T. Cazenave, An introduction to nonlinear Schrödinger Equations, Second Edition, Textos de Metodos Matematicas 26, Universidade Federal do Rio de Janeiro (1993).
- J.A. Carillo, J. Soler, On the Vlasov-Poisson-Fokker-Planck equation with measures in Morrey spaces as initial data, Zbl0876.35085
- Th. Colin, Smoothing effects for dispersive equations via a generalized Wigner transform, SIAM J. Math. Anal., Vol. 25, No 6, p. 1622-1641 (1994). Zbl0809.35089MR1302166
- R.J. Di Perna, P.L. Lions, Solutions globales d’équations du type Vlasov-Poisson, C. R. Acad. Sci. Paris, Vol. 307, 655-658 (1988). Zbl0682.35022
- P. Gerard, P.A. Markowich, N.J.Mauser, F. Poupaud, Homogenization limits and Wigner transforms, Comm. Pure Appl. Math., Vol. 50, N. 4, p. 323-379 (1997). Zbl0881.35099MR1438151
- J. Ginibre, G. Velo, The global Cauchy problem for some nonlinear Schrödinger equation revisited, Ann. Inst. H. Poincaré, Analyse nonlineaire 2, 309-327 (1985). Zbl0586.35042MR801582
- E. Horst, R. Hunze, Weak solutions of the initial value problem for the unmodified nonlinear Vlasov equation, Math. Meth. Appl. Sci., Vol. 6, 262-279 (1984). Zbl0556.35022MR751745
- N. Hayashi, T. Ozawa, Smoothing Effect for Some Schrödinger Equations, J. Funct. Anal., 85, p. 307-348, (1989). Zbl0681.35079MR1012208
- L. Hörmander, The Analysis of Linear Partial Differential Operators, Vol. I, Springer Verlag, New-York-Berlin (1983). Zbl0521.35002
- L. Hörmander, Hypoelliptic second order differential equations, Acta Math., Vol. 119, 147-171 (1967). 12 Zbl0156.10701MR222474
- R. Illner, H. Lange, P. Zweifel, Global existence, uniqueness and asymptotic behaviour of solutions of the Wigner-Poisson and Schrödinger systems, Math. Meth. Appl. Sci., Vol.17, 349-376 (1994). Zbl0808.35116MR1273317
- R. Illner, H. Neunzert, An existence theorem for the unmodified Vlasov equation, Math. Meth. Appl. Sci., Vol. 1, 530-540 (1979). Zbl0415.35076MR548686
- P.L. Lions, Th. Paul, Sur les mesures de Wigner, Rev. Mat. Iberoam., Vol. 9, Num. 3, 553-618 (1993). Zbl0801.35117MR1251718
- P.L. Lions, B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Invent. Math., Vol. 105, 415-430 (1991). Zbl0741.35061MR1115549
- P.L. Lions, B. Perthame, Lemmes de moments, de moyenne et de dispersion, C. R. Acad. Sci. Paris, Vol. 314, 801-806 (1992). Zbl0761.35085MR1166050
- P.A. Markowich, N. Mauser, F. Poupaud, A Wigner function approach to (semi) classical limits : electrons in a periodic potential, J. Math. Phys., Vol. 35, N. 3, p. 1066-1094 (1994). Zbl0805.35106MR1262733
- F. Nier, A semi-classical picture of quantum scattering, Ann. Sci. Ec. Norm. Sup., 4. Ser., t. 29, p. 149-183 (1996). Zbl0858.35106MR1373932
- B. Perthame, Time decay, Propagation of Low Moments and Dispersive Effects for Kinetic Equations, Comm. PDE, Vol. 21, 659-686 (1996). Zbl0852.35139MR1387464
- B. Perthame, S. Mischler, Solutions of the Boltzmann equation with infinite energy, SIAM J. Math. Anal., Vol. 28, N. 5, 1015-1027 (1997). Zbl0889.35077MR1466666
- K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Diff. Eq., 95, 281-303 (1992). Zbl0810.35089MR1165424
- G. Rein, growth estimates for the solutions of the Vlasov-Poisson system in the plasma physics case, to appear in Math. Nachrichten. Zbl0937.76096MR1621318
- G. Rein, J. Weckler, Generic global classical solutions of the Vlasov-Fokker-Planck-Poisson system in three dimensions, J. Diff. Eq., Vol. 95, 281-303 (1992). Zbl0810.35090MR1165424
- J. Schaeffer, Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions, Comm. PDE., Vol. 16, N. 8-9, 1313-1335 (1991). Zbl0746.35050MR1132787
- R.S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44, p. 705-714 (1977). 13 Zbl0372.35001MR512086
- Y. Tsutsumi, -Solutions for Nonlinear Schrödinger Equations and Nonlinear Groups, Funk. Ekva., 30, p. 115-125 (1987). Zbl0638.35021MR915266
- H.D. Victory, B.P. O’Dwyer, On classical solutions of Vlasov-PoissonFokker-Planck systems, Indiana Univ. Math. J., Vol. 39, 105-157 (1990). Zbl0674.60097
- E.P. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev., Vol. 40 (1932). Zbl0004.38201
- K. Yajima, Existence of Solutions for Schrödinger evolution Equations, Commun. Math. Phys., 110, p. 415-426 (1987). Zbl0638.35036MR891945
- S. Zagatti, The Cauchy problem for Hartree-Fock time dependent equations, Ann. Inst. H. Poincaré, Phys. Th., Vol. 56, N. 4, 357-374 (1992). Zbl0763.35089MR1175475
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.