Classes d'isogénie des variétés abéliennes sur un corps fini
Séminaire Bourbaki (1968-1969)
- Volume: 11, page 95-110
- ISSN: 0303-1179
Access Full Article
topHow to cite
topTate, John. "Classes d'isogénie des variétés abéliennes sur un corps fini." Séminaire Bourbaki 11 (1968-1969): 95-110. <http://eudml.org/doc/109770>.
@article{Tate1968-1969,
author = {Tate, John},
journal = {Séminaire Bourbaki},
language = {fre},
pages = {95-110},
publisher = {Springer-Verlag},
title = {Classes d'isogénie des variétés abéliennes sur un corps fini},
url = {http://eudml.org/doc/109770},
volume = {11},
year = {1968-1969},
}
TY - JOUR
AU - Tate, John
TI - Classes d'isogénie des variétés abéliennes sur un corps fini
JO - Séminaire Bourbaki
PY - 1968-1969
PB - Springer-Verlag
VL - 11
SP - 95
EP - 110
LA - fre
UR - http://eudml.org/doc/109770
ER -
References
top- [1] J. Giraud - Remarque sur une formule de Taniyama, Invent. Math., vol. 5, fasc. 3, 1968, p. 231-236. Zbl0165.54801MR227172
- [2] T. Honda - Isogeny classes of abelian varieties over finite fields, Journ. Math. Soc.Japan, 20, 1968, p. 83-95. Zbl0203.53302MR229642
- [3] J. Lubin - One-parameter formal Lie groups over p-adic integer rings, Annals of Maths., 80, 1964, p. 464-484. Zbl0135.07003MR168567
- [4] J. Lubin et J. Tate - Formal complex multiplication in local fields, Annals of Maths., 89, 1965, p. 380-387. Zbl0128.26501MR172878
- [5] J.I. Manin - La théorie des groupes formels commutatifs sur les corps de caractéristique finie (en russe), Usp. Mat. Nauk, 18, 1963, p. 3-90. [Traduction anglaise : Russian Math. Surv., 18, n° 6, p. 1-83.]
- [6] J.S. Milne - Extensions of abelian varieties defined over a finite field, Invent. Math., 5, 1968, p. 63-84. Zbl0205.24901MR229652
- [7] J.-P. Serre - Abelian l-adic representations and elliptic curves, W. A. Benjamin, Inc., New York, 1968. Zbl0186.25701MR263823
- [8] J.-P. Serre - Groupes p-divisible (d'après J. Tate), Sém. Bourbaki, 1966/67, exposé 318. Zbl0197.17201
- [9] J.-P. Serre et J. Tate - Good reduction of abelian varieties, Annals of Maths., à paraître. Zbl0172.46101
- [10] G. Shimura et Y. Taniyama - Complex multiplication of abelian varieties and its applications to number theory, Publ. Math. Soc.Japan, 6, 1961. Zbl0112.03502MR125113
- [11] J. Tate - Endomorphisms of abelian varieties over finite fields, Invent. Math., 2, 1966, p. 134-144. Zbl0147.20303MR206004
- [12] J. Tate - Endomorphisms of abelian varieties over finite fields II, Invent. Math., toujours à paraître. MR206004
- [13] W.C. Waterhouse - Abelian varieties over finite fields, Thesis, Harvard University, May 1968.
Citations in EuDML Documents
top- Rutger Noot, Abelian varieties-Galois representation and properties of ordinary reduction
- F. Oort, M. Van der Put, A construction of an abelian variety with a given endomorphism algebra
- Hans-Georg Rück, Abelian surfaces and jacobian varieties over finite fields
- Fedor Bogomolov, Yuri Tschinkel, On a theorem of Tate
- Adrian Vasiu, Crystalline boundedness principle
- Burt Totaro, Pseudo-abelian varieties
- Laurent Clozel, Nombre de points des variétés de Shimura sur un corps fini
- William C. Waterhouse, Abelian varieties over finite fields
- Everett W. Howe, Kristin E. Lauter, Improved upper bounds for the number of points on curves over finite fields
- Neal Koblitz, -adic variation of the zeta-function over families of varieties defined over finite fields
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.