Pseudo-abelian varieties
Annales scientifiques de l'École Normale Supérieure (2013)
- Volume: 46, Issue: 5, page 693-721
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topTotaro, Burt. "Pseudo-abelian varieties." Annales scientifiques de l'École Normale Supérieure 46.5 (2013): 693-721. <http://eudml.org/doc/272234>.
@article{Totaro2013,
abstract = {Chevalley’s theorem states that every smooth connected algebraic group over a perfect field is an extension of an abelian variety by a smooth connected affine group. That fails when the base field is not perfect. We define a pseudo-abelian variety over an arbitrary field $k$ to be a smooth connected $k$-group in which every smooth connected affine normal $k$-subgroup is trivial. This gives a new point of view on the classification of algebraic groups: every smooth connected group over a field is an extension of a pseudo-abelian variety by a smooth connected affine group, in a unique way.
We work out much of the structure of pseudo-abelian varieties. These groups are closely related to unipotent groups in characteristic $p$ and to pseudo-reductive groups as studied by Tits and Conrad-Gabber-Prasad. Many properties of abelian varieties such as the Mordell-Weil theorem extend to pseudo-abelian varieties. Finally, we conjecture a description of $\mathrm \{Ext\}^2(\mathbf \{G\}_a,\mathbf \{G\}_m)$ over any field by generators and relations, in the spirit of the Milnor conjecture.},
author = {Totaro, Burt},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {algebraic group; pseudo-reductive group; pseudo-abelian variety; unipotent group; Weil restriction},
language = {eng},
number = {5},
pages = {693-721},
publisher = {Société mathématique de France},
title = {Pseudo-abelian varieties},
url = {http://eudml.org/doc/272234},
volume = {46},
year = {2013},
}
TY - JOUR
AU - Totaro, Burt
TI - Pseudo-abelian varieties
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2013
PB - Société mathématique de France
VL - 46
IS - 5
SP - 693
EP - 721
AB - Chevalley’s theorem states that every smooth connected algebraic group over a perfect field is an extension of an abelian variety by a smooth connected affine group. That fails when the base field is not perfect. We define a pseudo-abelian variety over an arbitrary field $k$ to be a smooth connected $k$-group in which every smooth connected affine normal $k$-subgroup is trivial. This gives a new point of view on the classification of algebraic groups: every smooth connected group over a field is an extension of a pseudo-abelian variety by a smooth connected affine group, in a unique way.
We work out much of the structure of pseudo-abelian varieties. These groups are closely related to unipotent groups in characteristic $p$ and to pseudo-reductive groups as studied by Tits and Conrad-Gabber-Prasad. Many properties of abelian varieties such as the Mordell-Weil theorem extend to pseudo-abelian varieties. Finally, we conjecture a description of $\mathrm {Ext}^2(\mathbf {G}_a,\mathbf {G}_m)$ over any field by generators and relations, in the spirit of the Milnor conjecture.
LA - eng
KW - algebraic group; pseudo-reductive group; pseudo-abelian variety; unipotent group; Weil restriction
UR - http://eudml.org/doc/272234
ER -
References
top- [1] Théorie des intersections et théorème de Riemann-Roch, in Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6) (P. Berthelot, A. Grothendieck & L. Illusie, éds.), Lecture Notes in Math. 225, Springer, 1971, 700. MR354655
- [2] Groupes de monodromie en géométrie algébrique. I, in Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 I) (A. Grothendieck, éd.), Lecture Notes in Math. 288, Springer, 1972. MR354656
- [3] A. Borel, Linear algebraic groups, second éd., Graduate Texts in Math. 126, Springer, 1991. MR204532
- [4] S. Bosch, W. Lütkebohmert & M. Raynaud, Néron models, Ergebnisse Math. Grenzg. (3) 21, Springer, 1990. Zbl0705.14001
- [5] N. Bourbaki, Algèbre commutative. Chapitre 10, Springer, 2007. MR2333539
- [6] L. S. Breen, On a nontrivial higher extension of representable abelian sheaves, Bull. Amer. Math. Soc.75 (1969), 1249–1253. Zbl0184.46602MR255550
- [7] L. S. Breen, Un théorème d’annulation pour certains de faisceaux abéliens, Ann. Sci. École Norm. Sup.8 (1975), 339–352. Zbl0313.14001MR401768
- [8] M. Brion, Anti-affine algebraic groups, J. Algebra321 (2009), 934–952. Zbl1166.14029MR2488561
- [9] C. Chevalley, Une démonstration d’un théorème sur les groupes algébriques, J. Math. Pures Appl.39 (1960), 307–317. Zbl0115.38901MR126447
- [10] B. Conrad, A modern proof of Chevalley’s theorem on algebraic groups, J. Ramanujan Math. Soc.17 (2002), 1–18. Zbl1007.14005MR1906417
- [11] B. Conrad, Chow’s -image and -trace, and the Lang-Néron theorem, Enseign. Math.52 (2006), 37–108. MR2255529
- [12] B. Conrad, O. Gabber & G. Prasad, Pseudo-reductive groups, New Mathematical Monographs 17, Cambridge Univ. Press, 2010. Zbl1216.20038MR2723571
- [13] M. Demazure & P. Gabriel, Groupes algébriques, Masson, 1970. Zbl0203.23401
- [14] M. Demazure & A. Grothendieck, Schémas en groupes I, II, III (SGA 3), Springer Lecture Notes in Math. 151, 152, 153 (1970); revised version edited by P. Gille and P. Polo, vols. I and III, Soc. Math. de France (2011).
- [15] A. Grothendieck, Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes, Publ. Math. I.H.É.S. 8 (1961), 5–222.
- [16] A. Grothendieck, Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. II, Publ. Math. I.H.É.S. 17 (1963), 5–91. Zbl0122.16102MR163911
- [17] T. Kambayashi, M. Miyanishi & M. Takeuchi, Unipotent algebraic groups, Lecture Notes in Math. 414, Springer, 1974. Zbl0294.14022MR376696
- [18] K. Kato, A generalization of local class field theory by using -groups. II, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 603–683. Zbl0463.12006MR603953
- [19] N. M. Katz & B. Mazur, Arithmetic moduli of elliptic curves, Annals of Math. Studies 108, Princeton Univ. Press, 1985. Zbl0576.14026MR772569
- [20] S. L. Kleiman, The Picard scheme, in Fundamental algebraic geometry, Math. Surveys Monogr. 123, Amer. Math. Soc., 2005, 235–321. MR2223410
- [21] J. Kollár, Rational curves on algebraic varieties, Ergebnisse Math. Grenzg. 32, Springer, 1996. Zbl0877.14012
- [22] J. Kollár, Singularities of the minimal model program, Cambridge, 2013. Zbl1282.14028MR3057950
- [23] S. Lang, Fundamentals of Diophantine geometry, Springer, 1983. Zbl0528.14013MR715605
- [24] J. S. Milne, Étale cohomology, Princeton Mathematical Series 33, Princeton Univ. Press, 1980. MR559531
- [25] J. Oesterlé, Nombres de Tamagawa et groupes unipotents en caractéristique , Invent. Math.78 (1984), 13–88. Zbl0542.20024MR762353
- [26] M. Raynaud, Faisceaux amples sur les schémas en groupes et les espaces homogènes, Lecture Notes in Math. 119, Springer, 1970. Zbl0195.22701MR260758
- [27] M. Rosenlicht, Some basic theorems on algebraic groups, Amer. J. Math.78 (1956), 401–443. Zbl0073.37601MR82183
- [28] M. Rosenlicht, Some rationality questions on algebraic groups, Ann. Mat. Pura Appl.43 (1957), 25–50. Zbl0079.25703MR90101
- [29] C. Sancho de Salas & F. Sancho de Salas, Principal bundles, quasi-abelian varieties and structure of algebraic groups, J. Algebra322 (2009), 2751–2772. Zbl1191.14055MR2560900
- [30] S. Schröer, On genus change in algebraic curves over imperfect fields, Proc. Amer. Math. Soc.137 (2009), 1239–1243. Zbl1160.14015MR2465645
- [31] J-P. Serre, Algebraic groups and class fields, Graduate Texts in Math. 117, Springer, 1988. MR918564
- [32] K.-O. Stöhr, Hyperelliptic Gorenstein curves, J. Pure Appl. Algebra135 (1999), 93–105. Zbl0940.14018MR1667447
- [33] J. Tate, Genus change in inseparable extensions of function fields, Proc. Amer. Math. Soc.3 (1952), 400–406. Zbl0047.03901MR47631
- [34] J. Tate, Classes d’isogénie des variétés abéliennes sur un corps fini (d’après T. Honda), Séminaire Bourbaki 1968/69, exp. no 352, Lecture Notes in Math. 179 (1971), 95–110. MR3077121
- [35] J. Tits, Théorie des groupes, Ann. Collège de France 92 (1991/92), 115–133 (1993). MR1325738
- [36] J. Tits, Théorie des groupes, Ann. Collège de France 93 (1992/93), 113–131 (1994). MR1324358
- [37] E. Witt, -Algebren und Pfaffsche Formen, Abh. Math. Sem. Univ. Hamburg 22 (1958), 308–315; also in E. Witt, Collected Papers, Gesammelte Abhandlungen, Springer, 1998. MR97377
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.