Pseudo-abelian varieties

Burt Totaro

Annales scientifiques de l'École Normale Supérieure (2013)

  • Volume: 46, Issue: 5, page 693-721
  • ISSN: 0012-9593

Abstract

top
Chevalley’s theorem states that every smooth connected algebraic group over a perfect field is an extension of an abelian variety by a smooth connected affine group. That fails when the base field is not perfect. We define a pseudo-abelian variety over an arbitrary field k to be a smooth connected k -group in which every smooth connected affine normal k -subgroup is trivial. This gives a new point of view on the classification of algebraic groups: every smooth connected group over a field is an extension of a pseudo-abelian variety by a smooth connected affine group, in a unique way. We work out much of the structure of pseudo-abelian varieties. These groups are closely related to unipotent groups in characteristic p and to pseudo-reductive groups as studied by Tits and Conrad-Gabber-Prasad. Many properties of abelian varieties such as the Mordell-Weil theorem extend to pseudo-abelian varieties. Finally, we conjecture a description of  Ext 2 ( 𝐆 a , 𝐆 m ) over any field by generators and relations, in the spirit of the Milnor conjecture.

How to cite

top

Totaro, Burt. "Pseudo-abelian varieties." Annales scientifiques de l'École Normale Supérieure 46.5 (2013): 693-721. <http://eudml.org/doc/272234>.

@article{Totaro2013,
abstract = {Chevalley’s theorem states that every smooth connected algebraic group over a perfect field is an extension of an abelian variety by a smooth connected affine group. That fails when the base field is not perfect. We define a pseudo-abelian variety over an arbitrary field $k$ to be a smooth connected $k$-group in which every smooth connected affine normal $k$-subgroup is trivial. This gives a new point of view on the classification of algebraic groups: every smooth connected group over a field is an extension of a pseudo-abelian variety by a smooth connected affine group, in a unique way. We work out much of the structure of pseudo-abelian varieties. These groups are closely related to unipotent groups in characteristic $p$ and to pseudo-reductive groups as studied by Tits and Conrad-Gabber-Prasad. Many properties of abelian varieties such as the Mordell-Weil theorem extend to pseudo-abelian varieties. Finally, we conjecture a description of $\mathrm \{Ext\}^2(\mathbf \{G\}_a,\mathbf \{G\}_m)$ over any field by generators and relations, in the spirit of the Milnor conjecture.},
author = {Totaro, Burt},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {algebraic group; pseudo-reductive group; pseudo-abelian variety; unipotent group; Weil restriction},
language = {eng},
number = {5},
pages = {693-721},
publisher = {Société mathématique de France},
title = {Pseudo-abelian varieties},
url = {http://eudml.org/doc/272234},
volume = {46},
year = {2013},
}

TY - JOUR
AU - Totaro, Burt
TI - Pseudo-abelian varieties
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2013
PB - Société mathématique de France
VL - 46
IS - 5
SP - 693
EP - 721
AB - Chevalley’s theorem states that every smooth connected algebraic group over a perfect field is an extension of an abelian variety by a smooth connected affine group. That fails when the base field is not perfect. We define a pseudo-abelian variety over an arbitrary field $k$ to be a smooth connected $k$-group in which every smooth connected affine normal $k$-subgroup is trivial. This gives a new point of view on the classification of algebraic groups: every smooth connected group over a field is an extension of a pseudo-abelian variety by a smooth connected affine group, in a unique way. We work out much of the structure of pseudo-abelian varieties. These groups are closely related to unipotent groups in characteristic $p$ and to pseudo-reductive groups as studied by Tits and Conrad-Gabber-Prasad. Many properties of abelian varieties such as the Mordell-Weil theorem extend to pseudo-abelian varieties. Finally, we conjecture a description of $\mathrm {Ext}^2(\mathbf {G}_a,\mathbf {G}_m)$ over any field by generators and relations, in the spirit of the Milnor conjecture.
LA - eng
KW - algebraic group; pseudo-reductive group; pseudo-abelian variety; unipotent group; Weil restriction
UR - http://eudml.org/doc/272234
ER -

References

top
  1. [1] Théorie des intersections et théorème de Riemann-Roch, in Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6) (P. Berthelot, A. Grothendieck & L. Illusie, éds.), Lecture Notes in Math. 225, Springer, 1971, 700. MR354655
  2. [2] Groupes de monodromie en géométrie algébrique. I, in Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 I) (A. Grothendieck, éd.), Lecture Notes in Math. 288, Springer, 1972. MR354656
  3. [3] A. Borel, Linear algebraic groups, second éd., Graduate Texts in Math. 126, Springer, 1991. MR204532
  4. [4] S. Bosch, W. Lütkebohmert & M. Raynaud, Néron models, Ergebnisse Math. Grenzg. (3) 21, Springer, 1990. Zbl0705.14001
  5. [5] N. Bourbaki, Algèbre commutative. Chapitre 10, Springer, 2007. MR2333539
  6. [6] L. S. Breen, On a nontrivial higher extension of representable abelian sheaves, Bull. Amer. Math. Soc.75 (1969), 1249–1253. Zbl0184.46602MR255550
  7. [7] L. S. Breen, Un théorème d’annulation pour certains Ext i de faisceaux abéliens, Ann. Sci. École Norm. Sup.8 (1975), 339–352. Zbl0313.14001MR401768
  8. [8] M. Brion, Anti-affine algebraic groups, J. Algebra321 (2009), 934–952. Zbl1166.14029MR2488561
  9. [9] C. Chevalley, Une démonstration d’un théorème sur les groupes algébriques, J. Math. Pures Appl.39 (1960), 307–317. Zbl0115.38901MR126447
  10. [10] B. Conrad, A modern proof of Chevalley’s theorem on algebraic groups, J. Ramanujan Math. Soc.17 (2002), 1–18. Zbl1007.14005MR1906417
  11. [11] B. Conrad, Chow’s K / k -image and K / k -trace, and the Lang-Néron theorem, Enseign. Math.52 (2006), 37–108. MR2255529
  12. [12] B. Conrad, O. Gabber & G. Prasad, Pseudo-reductive groups, New Mathematical Monographs 17, Cambridge Univ. Press, 2010. Zbl1216.20038MR2723571
  13. [13] M. Demazure & P. Gabriel, Groupes algébriques, Masson, 1970. Zbl0203.23401
  14. [14] M. Demazure & A. Grothendieck, Schémas en groupes I, II, III (SGA 3), Springer Lecture Notes in Math. 151, 152, 153 (1970); revised version edited by P. Gille and P. Polo, vols. I and III, Soc. Math. de France (2011). 
  15. [15] A. Grothendieck, Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes, Publ. Math. I.H.É.S. 8 (1961), 5–222. 
  16. [16] A. Grothendieck, Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. II, Publ. Math. I.H.É.S. 17 (1963), 5–91. Zbl0122.16102MR163911
  17. [17] T. Kambayashi, M. Miyanishi & M. Takeuchi, Unipotent algebraic groups, Lecture Notes in Math. 414, Springer, 1974. Zbl0294.14022MR376696
  18. [18] K. Kato, A generalization of local class field theory by using K -groups. II, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 603–683. Zbl0463.12006MR603953
  19. [19] N. M. Katz & B. Mazur, Arithmetic moduli of elliptic curves, Annals of Math. Studies 108, Princeton Univ. Press, 1985. Zbl0576.14026MR772569
  20. [20] S. L. Kleiman, The Picard scheme, in Fundamental algebraic geometry, Math. Surveys Monogr. 123, Amer. Math. Soc., 2005, 235–321. MR2223410
  21. [21] J. Kollár, Rational curves on algebraic varieties, Ergebnisse Math. Grenzg. 32, Springer, 1996. Zbl0877.14012
  22. [22] J. Kollár, Singularities of the minimal model program, Cambridge, 2013. Zbl1282.14028MR3057950
  23. [23] S. Lang, Fundamentals of Diophantine geometry, Springer, 1983. Zbl0528.14013MR715605
  24. [24] J. S. Milne, Étale cohomology, Princeton Mathematical Series 33, Princeton Univ. Press, 1980. MR559531
  25. [25] J. Oesterlé, Nombres de Tamagawa et groupes unipotents en caractéristique p , Invent. Math.78 (1984), 13–88. Zbl0542.20024MR762353
  26. [26] M. Raynaud, Faisceaux amples sur les schémas en groupes et les espaces homogènes, Lecture Notes in Math. 119, Springer, 1970. Zbl0195.22701MR260758
  27. [27] M. Rosenlicht, Some basic theorems on algebraic groups, Amer. J. Math.78 (1956), 401–443. Zbl0073.37601MR82183
  28. [28] M. Rosenlicht, Some rationality questions on algebraic groups, Ann. Mat. Pura Appl.43 (1957), 25–50. Zbl0079.25703MR90101
  29. [29] C. Sancho de Salas & F. Sancho de Salas, Principal bundles, quasi-abelian varieties and structure of algebraic groups, J. Algebra322 (2009), 2751–2772. Zbl1191.14055MR2560900
  30. [30] S. Schröer, On genus change in algebraic curves over imperfect fields, Proc. Amer. Math. Soc.137 (2009), 1239–1243. Zbl1160.14015MR2465645
  31. [31] J-P. Serre, Algebraic groups and class fields, Graduate Texts in Math. 117, Springer, 1988. MR918564
  32. [32] K.-O. Stöhr, Hyperelliptic Gorenstein curves, J. Pure Appl. Algebra135 (1999), 93–105. Zbl0940.14018MR1667447
  33. [33] J. Tate, Genus change in inseparable extensions of function fields, Proc. Amer. Math. Soc.3 (1952), 400–406. Zbl0047.03901MR47631
  34. [34] J. Tate, Classes d’isogénie des variétés abéliennes sur un corps fini (d’après T. Honda), Séminaire Bourbaki 1968/69, exp. no 352, Lecture Notes in Math. 179 (1971), 95–110. MR3077121
  35. [35] J. Tits, Théorie des groupes, Ann. Collège de France 92 (1991/92), 115–133 (1993). MR1325738
  36. [36] J. Tits, Théorie des groupes, Ann. Collège de France 93 (1992/93), 113–131 (1994). MR1324358
  37. [37] E. Witt, p -Algebren und Pfaffsche Formen, Abh. Math. Sem. Univ. Hamburg 22 (1958), 308–315; also in E. Witt, Collected Papers, Gesammelte Abhandlungen, Springer, 1998. MR97377

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.