On a theorem of Tate

Fedor Bogomolov; Yuri Tschinkel

Open Mathematics (2008)

  • Volume: 6, Issue: 3, page 343-350
  • ISSN: 2391-5455

Abstract

top
We study applications of divisibility properties of recurrence sequences to Tate’s theory of abelian varieties over finite fields.

How to cite

top

Fedor Bogomolov, and Yuri Tschinkel. "On a theorem of Tate." Open Mathematics 6.3 (2008): 343-350. <http://eudml.org/doc/269397>.

@article{FedorBogomolov2008,
abstract = {We study applications of divisibility properties of recurrence sequences to Tate’s theory of abelian varieties over finite fields.},
author = {Fedor Bogomolov, Yuri Tschinkel},
journal = {Open Mathematics},
keywords = {finite fields; abelian varieties; Tate classes; finite field},
language = {eng},
number = {3},
pages = {343-350},
title = {On a theorem of Tate},
url = {http://eudml.org/doc/269397},
volume = {6},
year = {2008},
}

TY - JOUR
AU - Fedor Bogomolov
AU - Yuri Tschinkel
TI - On a theorem of Tate
JO - Open Mathematics
PY - 2008
VL - 6
IS - 3
SP - 343
EP - 350
AB - We study applications of divisibility properties of recurrence sequences to Tate’s theory of abelian varieties over finite fields.
LA - eng
KW - finite fields; abelian varieties; Tate classes; finite field
UR - http://eudml.org/doc/269397
ER -

References

top
  1. [1] Bogomolov F., Korotiaev M., Tschinkel Y., A Torelli theorem for curves over finite fields, preprint available at http://arxiv.org/abs/0802.3708 Zbl1193.14036
  2. [2] Corvaja P., Zannier U., Finiteness of integral values for the ratio of two linear recurrences, Invent. Math., 2002, 149, 431–451 http://dx.doi.org/10.1007/s002220200221 Zbl1026.11021
  3. [3] Deligne P., La conjecture de Weil I, Inst. Hautes Études Sci. Publ. Math., 1974, 43, 273–307 http://dx.doi.org/10.1007/BF02684373 
  4. [4] Honda T., Isogeny classes of abelian varieties over finite fields, J. Math. Soc. Japan, 1968, 20, 83–95 http://dx.doi.org/10.2969/jmsj/02010083 Zbl0203.53302
  5. [5] Magagna C., A lower bound for the r-order of a matrix modulo N, Monatsh. Math., 2008, 153, 59–81 http://dx.doi.org/10.1007/s00605-007-0484-2 Zbl1156.11013
  6. [6] Tate J., Endomorphisms of abelian varieties over finite fields, Invent. Math., 1966, 2, 134–144 http://dx.doi.org/10.1007/BF01404549 Zbl0147.20303
  7. [7] Tate J., Classes d’isogénie des variétés abéliennes sur un corps fini, In: Séminaire Bourbaki, Vol. 1968/69, Exposés 347–363, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1971, 179, 95–110 http://dx.doi.org/10.1007/BFb0058807 
  8. [8] Zarhin Y.G., Abelian varieties, l-adic representations and Lie algebras. Rank independence on l, Invent. Math., 1979, 55, 165–176 http://dx.doi.org/10.1007/BF01390088 Zbl0406.14026

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.