Le problème de Torelli

Arnaud Beauville

Séminaire Bourbaki (1985-1986)

  • Volume: 28, page 7-20
  • ISSN: 0303-1179

How to cite

top

Beauville, Arnaud. "Le problème de Torelli." Séminaire Bourbaki 28 (1985-1986): 7-20. <http://eudml.org/doc/110072>.

@article{Beauville1985-1986,
author = {Beauville, Arnaud},
journal = {Séminaire Bourbaki},
keywords = {Torelli problem; Hodge structure},
language = {fre},
pages = {7-20},
publisher = {Société Mathématique de France},
title = {Le problème de Torelli},
url = {http://eudml.org/doc/110072},
volume = {28},
year = {1985-1986},
}

TY - JOUR
AU - Beauville, Arnaud
TI - Le problème de Torelli
JO - Séminaire Bourbaki
PY - 1985-1986
PB - Société Mathématique de France
VL - 28
SP - 7
EP - 20
LA - fre
KW - Torelli problem; Hodge structure
UR - http://eudml.org/doc/110072
ER -

References

top
  1. [A] A. Andreotti - On a theorem of Torelli, Amer. J. of Math.80 (1958), 801-821. Zbl0084.17304MR102518
  2. [B 1] A. Beauville - Les singularités du diviseur Θ de la jacobienne intermédiaire de l'hypersurface cubique dans P4 , Algebraic Threefolds, Springer-VerlagLect. Notes947 (1982), 190-208. Zbl0492.14033
  3. [B 2] A. Beauville - Surfaces K3, Exposé 609 au Séminaire Bourbaki (juin 1983) Astérisque105-106 (1983), 217-229. Zbl0528.14016MR728990
  4. [B-P-V] W. Barth, C. Peters, A. Van De Ven - Compact complex surfaces, Springer-Verlag, Heidelberg (1984). Zbl0718.14023MR749574
  5. [C 1] F. Catanese - The moduli and the global period mapping of surfaces with K2 = pg = 1 : a counterexample to the global Torelli problem, Compositio math.41 (1980), 401-414. Zbl0444.14008MR589089
  6. [C 2] F. Catanese - On the period map of surfaces with K2 = χ = 2 , Classification of algebraic and analytic manifolds (K. Ueno, editor). Progress in Math.39, Birkhäuser (1983), 27-43. Zbl0543.14019
  7. [C-D] F. Catanese, O. Debarre - Surfaces with K2 = 2 , pg = 1 , q = 0 , à paraître. Zbl0658.14016
  8. [C-G] J. Carlson, P. Griffiths - Infinitesimal variations of Hodge structure and the global Torelli problem, Journées de géométrie algébrique d'Angers, Sijthoff and Nordhoff (1980), 51-76. Zbl0479.14007MR605336
  9. [Ch 1 ] K. Chakiris - Counterexamples to global Torelli for certain simply-connected surfaces, Bull. Amer. Math. Soc.2 (1980), 297-299. Zbl0432.32014MR555265
  10. [Ch 2] K. Chakiris - The Torelli problem for elliptic pencils, Topics in transcendental algebraic geometry (P. Griffiths, editor), Annals of Math. Studies106, Princeton University Press (1984), 157-181. Zbl0603.14021MR756851
  11. [Ci] C. Ciliberto - On a proof of Torelli's theorem, Algebraic geometry - open problems, Springer-Verlag, Lect. Notes997 (1983), 113-123. Zbl0513.14016MR714743
  12. [C1-G] H. Clemens, P. Griffiths - The intermediate Jacobian of the cubic threefold, Ann. of Math.95 (1972), 218-356. Zbl0214.48302MR302652
  13. [Co] A. Comessatti - Sulle trasformazioni hermitiane delle varietà di Jacobi, Atti R. Accad. Sci. Torino, 50 (1914-15), 439-455. JFM45.1359.03
  14. [Co-D] D. Cox, R. Donagi - On the failure of variational Torelli for regular elliptic surfaces with a section, à paraître. Zbl0566.14005
  15. [D] O. Debarre - Sur la démonstration de A. Weil du théorème de Torelli pour les courbes, Compositio math.58 (1986), 3-11. Zbl0623.32017MR834045
  16. [De] P. Deligne - Travaux de Griffiths, Exposé 376 du Séminaire Bourbaki (juin 1970), Springer-Verlag, Lect. Notes180 (1971). Zbl0208.48601MR498581
  17. [Do 1] R. Donagi - Generic Torelli for projective hypersurfaces, Compositio Math.50 (1983), 325-353. Zbl0598.14007MR720291
  18. [Do 2] R. Donagi - Generic Torelli and variational Schottky, Topics in transcendental algebraic geometry (P. Griffiths, editor), Annals of Math. Studies106, Princeton University Press (1984), 239-258. Zbl0603.14010MR756855
  19. [Do-G] R. Donagi, M. Green - A new proof of the symmetrizer lemma and a stronger weak Torelli theorem for projective hypersurfaces, J. of Diff. Geometry20(1984), 459-461. Zbl0599.14005MR788289
  20. [F] H. Flenner - The infinitesimal Torelli problem for zero sets of sections of vector bundles, à paraître. Zbl0613.14010
  21. [F-S] R. Friedman, R. Smith - Degenerations of Phym varieties and intersections of three quadrics, à paraître. Zbl0619.14027
  22. [G 1 ] M. Green - Quadrics of rank four in the ideal of a canonical curve, Inventiones math.75 (1984), 85-104. Zbl0542.14018MR728141
  23. [G 2] M. Green - Koszul cohomology of projective varieties, J. of Diff. Geometry19 (1984), 125-171. Zbl0559.14008MR739785
  24. [G 3] M. Green - The period map for hypersurfaces sections of high degree of an arbitrary variety, Compositio math.55 (1984), 135-156. Zbl0588.14004MR795711
  25. [Gr 1 ] P. Griffiths - Periods of integrals on algebraic manifolds, I et II, Amer. J. of Math.40 (1968), 568-626 et 805-865. Zbl0183.25501
  26. [Gr 2] P. Griffiths - On the periods of certain rational integrals, I et II, Ann. of Math.90 (1969), 460-541. Zbl0215.08103MR260733
  27. [G-H] P. Griffiths, J. Harris - Principles of algebraic geometry, J. Wiley and sons (1978). Zbl0836.14001MR507725
  28. [H] E. Horikawa - On the periods of Enriques surfaces, I et II, Math. Annalen234 (1978), 73-108 et 235 (1978), 217-246. Zbl0412.14015MR491725
  29. [K] J. Kiĭ - The local Torelli theorem for varieties with divisible canonical class, Math. USSR Izvestija12 (1978), 53-67. Zbl0399.14012
  30. [Ky] V. Kynev - Un exemple de surface simplement connexe de type général pour laquelle le théorème de Torelli local n'est pas satisfait (en russe), C.R. Ac. Bulg. Sci.30 (1977), 323-325. Zbl0363.14005MR441981
  31. [L-P-W] D. Liebermann, C. Peters, R. Wilsker - A theorem of local Torelli type, Math. Annalen231 (1977), 39-45. Zbl0367.14006MR499326
  32. [M] H. Martens - A new proof of Torelli's theorem, Ann. of Math.78 (1963), 107-111. Zbl0147.20801MR152528
  33. [Ma] T. Matsusaka - On a theorem of Torelli, Amer. J. of Math.80 (1958), 784-800. Zbl0100.35602MR97398
  34. [Me] J-Y. Merindol - Théorème de Torelli affine pour les intersections de deux quadriques, Inventiones math.80 (1985), 375-416. Zbl0554.14002MR791666
  35. [N] Y. Namikawa - Periods of Enriques surfaces, Math. Annalen270 (1985), 201-222. Zbl0536.14024MR771979
  36. [O-S] F. Oort, J. Steenbrink - On the local Torelli problem for algebraic curves, Journées de géométrie algébrique d'Angers, Sijthoff and Noordhoff (1980), 157-204. Zbl0444.14007MR605341
  37. [R] M. Reid - The complete intersection of two or more quadrics, Thesis, Cambridge (1972). 
  38. [S] M. Saito - Weak global Torelli theorem for certain weighted projective hypersurfaces, à paraître au Duke J. of math. Zbl0606.14031
  39. [S-D] B. Saint-Donat - Variétés de translation et théorème de Torelli, C.R. Ac. Sci. Paris, Série A 280 (1975), 1611-1612. Zbl0304.14022MR469925
  40. [Tj 1] A. Tjurin - The geometry of the Fano surface of a nonsingular cubic F ⊂ P4 and Torelli theorems for Fano surfaces and cubics, Math. USSR Izvestija5 (1971), 517-546. Zbl0252.14004
  41. [Tj 2] A. Tjurin - On intersections of quadrics, Russian Math. Surveys30 (1975), 51-105. Zbl0339.14020MR424833
  42. [T 1] A. Todorov - Surfaces of general type with pg = 1 and K2 = 1 , Ann. Sci. Ec. Norm. Sup.13 (1980), 1-21. Zbl0478.14030MR584080
  43. [T 2] A. Todorov - A construction of surfaces with pg = 1 , q = 0 and 2 ≦ K2 ≦ 8 , counterexamples of the global Torelli theorem, Inventiones math.63, (1981), 287-304. Zbl0457.14016
  44. [To] R. Torelli - Sulle varietà di Jacobi, Rend. Acc. Lincei (5) 22 (1914), 98-103. JFM44.0655.03
  45. [U 1] S. Usui - Local Torelli theorem for some nonsingular weighted complete intersections, Proc. of the Inter. Symposium on algebraic geometry, Kinokuniya, Tokyo (1978), 723-734. Zbl0418.14005MR578884
  46. [U 2] S. Usui - Period map of surfaces with pg = c21 = 1 and K ample, Mem. Fac. Sci. Kochi Univ. ser. A, 2 (1981), 37-73. Zbl0487.14007MR602105
  47. [U 3] S. Usui - Variation of mixed Hodge structures arising from family of logarithmic deformations, Ann. scient. Ec. Norm. Sup.16 (1983), 91-107. Zbl0516.14006MR719764
  48. [V] C. Voisin - Le théorème de Torelli pour les hypersurfaces cubiques dans P5 , à paraître à Inventiones math. 
  49. [W] A. Weil - Zum Beweis des Torellischen Satzes, Nachr. Akad. Wiss. Göttingen Math. Phys. K1IIa (1957) 33-53. Zbl0079.37002MR89483

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.