Variation of mixed Hodge structures arising from family of logarithmic deformations

Sampei Usui

Annales scientifiques de l'École Normale Supérieure (1983)

  • Volume: 16, Issue: 1, page 91-107
  • ISSN: 0012-9593

How to cite

top

Usui, Sampei. "Variation of mixed Hodge structures arising from family of logarithmic deformations." Annales scientifiques de l'École Normale Supérieure 16.1 (1983): 91-107. <http://eudml.org/doc/82113>.

@article{Usui1983,
author = {Usui, Sampei},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {variation of mixed Hodge structure; infinitesimal Torelli problem; relative logarithmic De Rham complex; Hodge filtration},
language = {eng},
number = {1},
pages = {91-107},
publisher = {Elsevier},
title = {Variation of mixed Hodge structures arising from family of logarithmic deformations},
url = {http://eudml.org/doc/82113},
volume = {16},
year = {1983},
}

TY - JOUR
AU - Usui, Sampei
TI - Variation of mixed Hodge structures arising from family of logarithmic deformations
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1983
PB - Elsevier
VL - 16
IS - 1
SP - 91
EP - 107
LA - eng
KW - variation of mixed Hodge structure; infinitesimal Torelli problem; relative logarithmic De Rham complex; Hodge filtration
UR - http://eudml.org/doc/82113
ER -

References

top
  1. [1] F. CATANESE, Surfaces with K² = pg = 1 and Their Period Mapping. (Proc. Summer Meeting on Algebraic Geometry, Copenhagen 1978, Lect. Notes in Math., No. 732, Springer Verlag, pp. 1-29). Zbl0423.14019MR81c:14018
  2. [2] F. CATANESE, The Moduli and the Global Period Mapping of Surfaces with K² = pg = 1 : A Counterexample to the Global Torelli Problem. (Comp. Math., Vol. 41-3, 1980, pp. 401-414). Zbl0444.14008MR81k:14027
  3. [3] P. DELIGNE, Equations différentielles à points singuliers réguliers. (Lect. Notes in Math., No. 163, 1970, Springer Verlag). Zbl0244.14004MR54 #5232
  4. [4] P. DELIGNE, Théorie de Hodge, II (Publ. Math. I.H.E.S., Vol. 40, 1971, pp. 5-58). Zbl0219.14007MR58 #16653a
  5. [5] P. DELIGNE, Travaux de Griffiths. (Sém. Bourbaki Exp., Vol. 376, 1969/1970, Lect. Notes in Math., No. 180, Springer Verlag). Zbl0208.48601
  6. [6] P. GRIFFITHS and W. SCHMID, Recent Developements in Hodge theory : A Discussion of Techniques and Results. (Proc. Internat. Coll., Bombay, Oxford Press, 1971, pp. 31-127). Zbl0355.14003
  7. [7] N. M. KATZ and T. ODA, On the Deformations of De Rham Cohomology Classes with Respect to Parameters. (J. Math. Kyoto Univ., Vol. 8-2, 1968, pp. 199-213). Zbl0165.54802MR38 #5792
  8. [8] Y. KAWAMATA, On Deformations of Compactified Manifolds. (Math. Ann., Vol. 235, 1978, pp. 247-265). Zbl0363.32015MR80c:32026
  9. [9] K. SAITO, On the Uniformization of Complements of Discriminant Loci. (A.M.S. Summer Institute, 1975). 
  10. [10] A. N. TODOROV, Surfaces of General Type with pg = 1 and (K, K) = 1.I. (Ann. scient. Ec. Norm. Sup., 4e sér., Vol. 13-1, 1980, pp. 1-21). Zbl0478.14030MR82i:14024
  11. [11] S. USUI, Period Map of Surfaces with pg = c²1 = 1 and K Ample. (Mem. Fac. Sc. Kochi Univ. (Math.), Vol. 2, 1981, pp. 37-73). Zbl0487.14007MR82e:14040
  12. [12] S. USUI, Effect of Automorphisms on Variation of Hodge Structure. (J. Math. Kyoto Univ., Vol. 21-4, 1981). Zbl0497.14003MR83h:14026
  13. [13] S. USUI, Torelli Theorem for Surfaces with pg = c21 = 1 and K Ample and with Certain Type of Automorphism. (Comp. Math. Vol. 45-3, 1982, pp. 293-314). Zbl0507.14028MR84d:14021
  14. [14] R. GODEMENT, Topologie algébrique et théorie des faisceaux. (Publ. Inst. Math. Univ. Strasbourg, Vol. XIII, Hermann, Paris, 1958). Zbl0080.16201MR21 #1583
  15. [15] C. BĂNICĂ and O. STĂnĂCILĂ, Metode Algebrice in Teorica Globală a Spatiilor Complexe. (Editura Academici Republicii Socialiste Româna, Bucuresti, 1974, English Edition, John Wiley & Sons, London, New York, Sydney, Toronto, 1976). 
  16. [16] D. LIEBERMAN, R. WILSKER and C. PETERS, A Theorem of Local Torelli Type. (Math. Ann., 1977). Zbl0367.14006MR58 #17225
  17. [17] S. MORI, On a Generalization of Complete Intersections. (J. Math. Kyoto Univ., Vol. 15-3, 1975, pp. 619-646). Zbl0332.14019MR52 #13865
  18. [18] P. GRIFFITHS, Periods of Integrals on Algebraic Manifolds I, II, III. (Amer. J. Math., Vol. 90, 1968, pp. 568-626 ; idem pp. 805-865 ; Publ. Math. I.H.E.S., Vol. 38, 1970, pp. 125-180). Zbl0212.53503
  19. [19] F. I. KINEV, A Simply Connected Surface of General Type for which the Local Torelli Theorem does not Hold. (C.R. Acad. Bulgare des Sci., Vol. 30-3, 1977, pp. 323-325 (Russian)). Zbl0363.14005MR56 #370

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.