Bohr–Sommerfeld quantization condition for non-selfadjoint operators in dimension 2.

Johannes Sjöstrand[1]

  • [1] Centre de Mathématiques, Ecole Polytechnique, F - 91128 - Palaiseau cedex

Séminaire Équations aux dérivées partielles (2000-2001)

  • Volume: 2000-2001, page 1-8

How to cite

top

Sjöstrand, Johannes. "Bohr–Sommerfeld quantization condition for non-selfadjoint operators in dimension 2.." Séminaire Équations aux dérivées partielles 2000-2001 (2000-2001): 1-8. <http://eudml.org/doc/11012>.

@article{Sjöstrand2000-2001,
affiliation = {Centre de Mathématiques, Ecole Polytechnique, F - 91128 - Palaiseau cedex},
author = {Sjöstrand, Johannes},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {Bohr-Sommerfeld quantization condition; smooth symbol; KAM theorem},
language = {eng},
pages = {1-8},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Bohr–Sommerfeld quantization condition for non-selfadjoint operators in dimension 2.},
url = {http://eudml.org/doc/11012},
volume = {2000-2001},
year = {2000-2001},
}

TY - JOUR
AU - Sjöstrand, Johannes
TI - Bohr–Sommerfeld quantization condition for non-selfadjoint operators in dimension 2.
JO - Séminaire Équations aux dérivées partielles
PY - 2000-2001
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2000-2001
SP - 1
EP - 8
LA - eng
KW - Bohr-Sommerfeld quantization condition; smooth symbol; KAM theorem
UR - http://eudml.org/doc/11012
ER -

References

top
  1. A. Bazzani, G. Turchetti, Singularities of normal forms and topology of orbits in area-preserving maps, J. Phys. A, 25(8)(1992), 427–432. Zbl0761.58009MR1162865
  2. L. Bers, F. John, M. Schechter, Partial differential equations, Reprint of the 1964 original. Lectures in Applied Mathematics, AMS, Providence, R.I., 1979. Zbl0514.35001MR163043
  3. E. Chirka, seminar talk in Gothenburg, April 2000. 
  4. Y. Colin de Verdière, Quasi-modes sur les variétés Riemanniennes, Inv. Math., 43(1)(1977), 15–52. Zbl0449.53040MR501196
  5. S. Fujiie, T. Ramond, Matrice de scattering et résonances associées à une orbite hétérocline, Ann. Inst. H. Poincaré, Phys. Théor., 69(1)(1998), 31–82. Zbl0916.34071MR1635811
  6. C. Gérard, J. Sjöstrand, Semiclassical resonances generated by a closed trajectory of hyperbolic type, Comm. Math. Phys., 108(1987), 391–421. Zbl0637.35027MR874901
  7. A. Grigis, J. Sjöstrand, Microlocal analysis for differential operators, London Math. Soc. Lecture Notes Series 196, Cambridge Univ. Press, 1994. Zbl0804.35001MR1269107
  8. B. Helffer, D. Robert, Puits de potentiel généralisés et asymptotique semiclassique, Ann. Henri Poincaré, Phys. Th., 41(3)(1984), 291–331. Zbl0565.35082MR776281
  9. B. Helffer, J. Sjöstrand, Résonances en limite semiclassique, Bull. de la SMF 114(3), Mémoire 24/25(1986). Zbl0631.35075
  10. N. Kaidi, Ph. Kerdelhué, Forme normale de Birkhoff et résonances, Asympt. Anal., 23(2000), 1–21. Zbl0955.35009MR1764337
  11. A. Lahmar-Benbernou, A. Martinez, On Helffer–Sjöstrand’s theory of resonances, Preprint March 2001. 
  12. L. Landau, B. Lifschitz, Mécanique quantique, théorie non relativiste, Editions Mir, Moscou 1966. Zbl0144.47605
  13. V.F. Lazutkin, KAM theory and semiclassical approximations to eigenfunctions. With an addendum by A. I. Shnirelman. Ergebnisse der Mathematik und ihrer Grenzgebiete, 24. Springer-Verlag, Berlin, 1993. Zbl0814.58001MR1239173
  14. A. Melin, J, Sjöstrand, Determinants of pseudodifferential operators and complex deformations of phase space, Preprint, Jan. 2001. Zbl1082.35176MR1957486
  15. G. Popov, Invariant tori, effective stability, and quasimodes with exponentially small error terms. I. Birkhoff normal forms, Ann. Henri Poincaré, Phys. Th., 1(2)(2000), 223–248. Zbl0970.37050MR1770799
  16. G. Popov, Invariant tori, effective stability, and quasimodes with exponentially small error terms. II. Quantum Birkhoff normal forms, Ann. Henri Poincaré, Phys. Th., 1(2)(2000), 249–279. Zbl1002.37028MR1770800
  17. J. Sjöstrand, Semi-excited states in nondegenerate potential wells, Asymptotic Analysis, 6(1992), 29–43. Zbl0782.35050MR1188076
  18. J. Sjöstrand, Singularités analytiques microlocales, Astérisque, 95(1982). Zbl0524.35007MR699623
  19. J. Sjöstrand, Function spaces associated to global I-Lagrangian manifolds, pages 369-423 in Structure of solutions of differential equations, Katata/Kyoto, 1995, World Scientific 1996. Zbl0889.46027MR1445350
  20. J. Sjöstrand, Semiclassical resonances generated by a non-degenerate critical point, Springer LNM 1256, 402–429. Zbl0627.35074MR897789
  21. S. Vu-Ngoc, Invariants symplectiques et semi-classiques des systèmes intégrables avec singularité, Séminaire e.d.p., Ecole Polytechnique, 23 janvier, 2000–2001. Zbl1072.37047MR1860684

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.