Orbites périodiques dans le problème des trois corps

Claude Viterbo

Séminaire Bourbaki (1992-1993)

  • Volume: 35, page 377-393
  • ISSN: 0303-1179

How to cite


Viterbo, Claude. "Orbites périodiques dans le problème des trois corps." Séminaire Bourbaki 35 (1992-1993): 377-393. <http://eudml.org/doc/110176>.

author = {Viterbo, Claude},
journal = {Séminaire Bourbaki},
keywords = {strong-force type potential; existence; critical points at infinity; variational problem; Conley's theory; isolated invariant sets; Morse index},
language = {fre},
pages = {377-393},
publisher = {Société Mathématique de France},
title = {Orbites périodiques dans le problème des trois corps},
url = {http://eudml.org/doc/110176},
volume = {35},
year = {1992-1993},

AU - Viterbo, Claude
TI - Orbites périodiques dans le problème des trois corps
JO - Séminaire Bourbaki
PY - 1992-1993
PB - Société Mathématique de France
VL - 35
SP - 377
EP - 393
LA - fre
KW - strong-force type potential; existence; critical points at infinity; variational problem; Conley's theory; isolated invariant sets; Morse index
UR - http://eudml.org/doc/110176
ER -


  1. [A-CZ 1] Ambrosetti, A. and Coti-Zelati, V., Critical points with lack of compactness and applications to singular dynamical systems,, Annali Mat. Pura Appl.149 (1987), 237-259. Zbl0642.58017MR932787
  2. [A-CZ 2] Ambrosetti, A. and Coti-Zelati, V., Periodic solutions of singular dynamical systems, in "Periodic solutions of Hamiltonian systems and related topics," P.H Rabinowitz et al eds, Nato ASI Series, Reidel, 1987, pp. 1-10. Zbl0632.34042MR920605
  3. [A-CZ 3] Ambrosetti, A. and Coti-Zelati, V., Noncollision orbits for a class of Keplerian like potentials, Ann. Inst. Henri Poincaré, Analyse Non Linéaire5 (1988), 287-295. Zbl0667.58055MR954474
  4. [A-CZ 4] Ambrosetti, A. and Coti-Zelati, V., Perturbation of hamiltonian systems with Kepterian potentials, Math. Zeitschrift201 (1989), 227-242. Zbl0653.34032MR997224
  5. [A-CZ 5] Ambrosetti, A. and Coti-Zelati, V., Closed orbits of fixed energy for a class of n-body problems, Ann. Inst. Henri Poincaré, Analyse Non Linéaire9 (1992), 187-200. Zbl0757.70007MR1160848
  6. [A-CZ 6] Ambrosetti, A. and Coti-Zelati, V., "Periodic solutions of singular Lagrangian systems," Birkhaüser, 1993. Zbl0785.34032MR1267225
  7. [B ] Bahri, A.,, Variational contribution of periodic orbits obtained by the Birkhoff-- Lewis method, preprint, Department of Mathematics, Rutgers University, New Brunswick, N.J. 08903, U.S.A.. 
  8. [B-C 1] Bahri, A., Coron, J-M., Une théorie des points critiques à l'infini pour l'équation de Yamabe et le problème de Kazdan-Warner, C. R. Acad. Sci. Paris Ser. I Math.300 (1985), 513-516. Zbl0585.58005MR792378
  9. [B-C 2] Bahri, A., Coron, J-M., On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure and Appl. Math.41 (1988), 253-294. Zbl0649.35033MR929280
  10. [B-C 3] Bahri, A., Coron, J-M., The scalar-curvature problem on the standard three-dimensional sphere.—, J. Funct. Anal.95 (1991), 106-172. Zbl0722.53032MR1087949
  11. [B-L 1] Bahri, A., Lions, P.L., Remarques sur la théorie variationelle des points critiques et applications, C.R. Acad.Sci.,Paris301 (1985), p. 145-147. Zbl0589.58007MR801948
  12. [B-L 2] Bahri, A. and Lions, P.L., Morse index of some min-max critical points I. Applications to multiplicity results, Comm. Pure Appl. Math.41 (1988), 1027-1037. Zbl0645.58013MR968487
  13. [B-D'O] Bahri, A. et D'Onofrio, B., Exponential growth of the number of periodic orbits for three body type problems, Maghreb Math. Rev.1 (1992), 1-14. Zbl0801.70006MR1252384
  14. [B-R 1] Bahri, A. et Rabinowitz, P., A minmax method for a class of Hamiltonian systems with singular potentials, J. Functional Anal.8 (1989), 561-649. Zbl0681.70018
  15. [B-R 2] Bahri, A. et Rabinowitz, P., Periodic solutions of Hamiltonian systems of three-body type, Ann. Inst. Poincaré Analyse Non Linéaire82 (1991), 412-428. 
  16. [B-CZ] Bessi, U. et Coti-Zelati, V., Symmetries and non-collision closed orbits for planar N-Body type problems, Non Linear Anal. TMA16 (1991), 587-598. Zbl0715.70016MR1094320
  17. [Bi] Birkhoff, G., "Dynamical systems,", Amer. Math. Soc., Providence,R.I., 1924. 
  18. [Br] Brézis, H., Points critiques dans les problèmes variationnels sans compacité, Séminaire Bourbaki, Exposé 698, Astérisque161-162 (1988), 239-256. Zbl0860.58007MR992212
  19. [Co] Conley, C.C., "Isolated Invariant Sets and their Morse Index," C.B.M.S. Reg. Conf. Series in Math. n° 38, Amer. Math. Soc., Providence,R.I., 1978. Zbl0397.34056MR511133
  20. [CZ 1] Coti-Zelati, V., Periodic solutions for N-body type problems, Ann. Inst. Henri Poincaré, Analyse Non Linéaire7 (1990), 477-492. Zbl0723.70010MR1138534
  21. [CZ 2] Coti-Zelati, V., A class of periodic solutions of the N-body problem, Cel. Mech. and Dyn. Astr.46 (1989), 177-186. Zbl0684.70006MR1044425
  22. [DA] Dell'Antonio, G., Finding non-collision periodic solutions to a perturbed N-body Kepler problem, preprint Dip. di Matematica Univ. Roma "La Sapienza". 
  23. [F] Floer, A., Witten's complex and infinite-dimensional Morse theory, J. of Differential Geom.30 (1989), 207-221.. Zbl0678.58012MR1001276
  24. [G] Gordon, W., Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc.204 (1975), 113-135. Zbl0276.58005MR377983
  25. [Gr] Greco, C., Periodic solutions of a class of singular Hamiltonian systems, Nonlinear Analysis12 (1988), 259-269. Zbl0648.34048MR928560
  26. [K] Klingenberg, W., "Lectures on Closed Geodesics," Grundlehren derMath. Wissenschaften, Band230, Springer-Verlag, Berlin-Heidelberg-NewYork, 1978. Zbl0397.58018MR478069
  27. [L] Lions, P.L., The concentration compactness principle in the calculus of Variations (Part 1 and 2), Revista Matematica Iberoamericana1 (1985), 45 and 145. Zbl0704.49005MR850686
  28. [M-T 1] Majer, P. et Teracini, S., Periodic solutions to some n-body type problems, Arch. Rat. Mech. Anal. (to appear). 
  29. [M-T 2] Majer, P. et Teracini, S., Periodic solutions to some n-body type problems: the fixed energy case, Duke Math. Jour. (to appear). Zbl0807.70009
  30. [M-T 3] Majer, P. et Teracini, S., Multiple periodic solutions to some N-body type problems via a collision index, preprint, Dip. di Matematica del Politecnico di Milano, Pzza L. da Vinci 32, Milano. 
  31. [R] Riahi, H., Periodic orbits of n-body type problems, PhD dissertation, Department of Mathematics, Rutgers University, New Brunswik, N.J. 08903, U.S.A.. 
  32. [S-T] Serra, E. et Teracini, S., Collisionless periodic solutions to some three-body problems, Arch. Rat. Mech. Anal.120 (1992), 305-325. Zbl0773.70009MR1185563
  33. [Si-M] Siegel, C.L. et Moser, J., "Lectures on celestial mechanics," Springer-Verlag, 1971. Zbl0817.70001MR502448
  34. [Su] Sundman, Acta Soc. Sci. Fenn.35 (1909). 
  35. [Su-VP] Sullivan, D., Vigué-Poirrier, M., The homology theory of the closed geodesic problems, Jour. of Differential Geometry11 (1976), 633-644. Zbl0361.53058MR455028
  36. [Ta 1] Tanaka, K., Morse indices at critical points related to the symmetric mountain pass theorem and applications, Comm. Partial Diff. Eq.14 (1989), 99—128. Zbl0669.34035MR973271
  37. [Ta 2] Tanaka, K., Non-collision solutions for a second order singular Hamiltonian system with weak force, preprint. Zbl0781.58036
  38. [V ] Viterbo, C., Indice de Morse des points critiques obtenus par minimax, Annales de l'Institut Henri Poincaré: Analyse non linéaire5 (1988), 221—225. Zbl0695.58007MR954472

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.