Periodic solutions for N-body type problems

Vittorio Coti Zelati

Annales de l'I.H.P. Analyse non linéaire (1990)

  • Volume: 7, Issue: 5, page 477-492
  • ISSN: 0294-1449

How to cite

top

Coti Zelati, Vittorio. "Periodic solutions for N-body type problems." Annales de l'I.H.P. Analyse non linéaire 7.5 (1990): 477-492. <http://eudml.org/doc/78235>.

@article{CotiZelati1990,
author = {Coti Zelati, Vittorio},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {non-collision solution; generalized solution; existence of periodic solutions},
language = {eng},
number = {5},
pages = {477-492},
publisher = {Gauthier-Villars},
title = {Periodic solutions for N-body type problems},
url = {http://eudml.org/doc/78235},
volume = {7},
year = {1990},
}

TY - JOUR
AU - Coti Zelati, Vittorio
TI - Periodic solutions for N-body type problems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1990
PB - Gauthier-Villars
VL - 7
IS - 5
SP - 477
EP - 492
LA - eng
KW - non-collision solution; generalized solution; existence of periodic solutions
UR - http://eudml.org/doc/78235
ER -

References

top
  1. [1] A. Ambrosetti and V. CotiZELATI, Critical points with lack of compactness and singular dynamical systems, Ann. Mat. Pura Appl., Vol. 149, 1987, pp. 237-259. Zbl0642.58017MR932787
  2. [2] A. Ambrosetti and V. Coti Zelati, Perturbation of Hamiltonian systems with Keplerian potentials, Math. Z., Vol. 201, 1989, pp. 227-242. Zbl0653.34032MR997224
  3. [3] A. Bahri and P.H. Rabinowitz, A minimax method for a class of Hamiltonian systems with singular potentials, J. Funct. Anal., Vol. 82, 1989, pp. 412-428. Zbl0681.70018MR987301
  4. [4] A. Bahri and P.H. Rabinowitz, Solutions of the three-body problem via critical points at infinity, Preprint Univ. of Wisconsin-Madison, 1988. 
  5. [5] V. Coti Zelati, A class of periodic solutions of the N-body problem, Celestial Mech., Vol. 46, 1989, pp. 177-186. Zbl0684.70006MR1044425
  6. [6] M. Degiovanni and F. Giannoni, Periodic solutions of dynamical systems with Newtonian-type potentials, Ann. Sci. Norm. Sup. Pisa, Vol. 15, 1988, pp. 467-494. Zbl0692.34050MR1015804
  7. [7] W. Gordon, Conservative dynamical systems involving strong forces, Trans. Am. Math. Soc., Vol. 204, 1975, pp. 113-135. Zbl0276.58005MR377983
  8. [8] C. Greco, Periodic solutions of a class of singular Hamiltonian systems, Nonlin. Anal. TMA, Vol. 12, 1988, pp. 259-269. Zbl0648.34048MR928560
  9. [9] P.H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math., Vol. 31, 1978, pp. 157-184. Zbl0358.70014MR467823

Citations in EuDML Documents

top
  1. A. Ambrosetti, V. Coti-Zelati, Closed orbits of fixed energy for a class of N-body problems
  2. Antonio Ambrosetti, Kazunaga Tanaka, Enzo Vitillaro, Periodic solutions with prescribed energy for some keplerian N -body problems
  3. Gianni Arioli, Filippo Gazzola, Susanna Terracini, Minimization properties of Hill's orbits and applications to some N-body problems
  4. Vivina Barutello, Simone Secchi, Morse index properties of colliding solutions to the N-body problem
  5. Claude Viterbo, Orbites périodiques dans le problème des trois corps
  6. Pengfei Yuan, Shiqing Zhang, New Periodic Solutions for N-Body Problems with Weak Force Potentials
  7. Antonio Ambrosetti, Critical points and nonlinear variational problems

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.