Periodic solutions for N-body type problems
Annales de l'I.H.P. Analyse non linéaire (1990)
- Volume: 7, Issue: 5, page 477-492
- ISSN: 0294-1449
Access Full Article
topHow to cite
topCoti Zelati, Vittorio. "Periodic solutions for N-body type problems." Annales de l'I.H.P. Analyse non linéaire 7.5 (1990): 477-492. <http://eudml.org/doc/78235>.
@article{CotiZelati1990,
author = {Coti Zelati, Vittorio},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {non-collision solution; generalized solution; existence of periodic solutions},
language = {eng},
number = {5},
pages = {477-492},
publisher = {Gauthier-Villars},
title = {Periodic solutions for N-body type problems},
url = {http://eudml.org/doc/78235},
volume = {7},
year = {1990},
}
TY - JOUR
AU - Coti Zelati, Vittorio
TI - Periodic solutions for N-body type problems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1990
PB - Gauthier-Villars
VL - 7
IS - 5
SP - 477
EP - 492
LA - eng
KW - non-collision solution; generalized solution; existence of periodic solutions
UR - http://eudml.org/doc/78235
ER -
References
top- [1] A. Ambrosetti and V. CotiZELATI, Critical points with lack of compactness and singular dynamical systems, Ann. Mat. Pura Appl., Vol. 149, 1987, pp. 237-259. Zbl0642.58017MR932787
- [2] A. Ambrosetti and V. Coti Zelati, Perturbation of Hamiltonian systems with Keplerian potentials, Math. Z., Vol. 201, 1989, pp. 227-242. Zbl0653.34032MR997224
- [3] A. Bahri and P.H. Rabinowitz, A minimax method for a class of Hamiltonian systems with singular potentials, J. Funct. Anal., Vol. 82, 1989, pp. 412-428. Zbl0681.70018MR987301
- [4] A. Bahri and P.H. Rabinowitz, Solutions of the three-body problem via critical points at infinity, Preprint Univ. of Wisconsin-Madison, 1988.
- [5] V. Coti Zelati, A class of periodic solutions of the N-body problem, Celestial Mech., Vol. 46, 1989, pp. 177-186. Zbl0684.70006MR1044425
- [6] M. Degiovanni and F. Giannoni, Periodic solutions of dynamical systems with Newtonian-type potentials, Ann. Sci. Norm. Sup. Pisa, Vol. 15, 1988, pp. 467-494. Zbl0692.34050MR1015804
- [7] W. Gordon, Conservative dynamical systems involving strong forces, Trans. Am. Math. Soc., Vol. 204, 1975, pp. 113-135. Zbl0276.58005MR377983
- [8] C. Greco, Periodic solutions of a class of singular Hamiltonian systems, Nonlin. Anal. TMA, Vol. 12, 1988, pp. 259-269. Zbl0648.34048MR928560
- [9] P.H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math., Vol. 31, 1978, pp. 157-184. Zbl0358.70014MR467823
Citations in EuDML Documents
top- A. Ambrosetti, V. Coti-Zelati, Closed orbits of fixed energy for a class of N-body problems
- Antonio Ambrosetti, Kazunaga Tanaka, Enzo Vitillaro, Periodic solutions with prescribed energy for some keplerian -body problems
- Gianni Arioli, Filippo Gazzola, Susanna Terracini, Minimization properties of Hill's orbits and applications to some N-body problems
- Vivina Barutello, Simone Secchi, Morse index properties of colliding solutions to the N-body problem
- Claude Viterbo, Orbites périodiques dans le problème des trois corps
- Pengfei Yuan, Shiqing Zhang, New Periodic Solutions for N-Body Problems with Weak Force Potentials
- Antonio Ambrosetti, Critical points and nonlinear variational problems
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.