Non-collision solutions for a second order singular hamiltonian system with weak force

Kazunaga Tanaka

Annales de l'I.H.P. Analyse non linéaire (1993)

  • Volume: 10, Issue: 2, page 215-238
  • ISSN: 0294-1449

How to cite

top

Tanaka, Kazunaga. "Non-collision solutions for a second order singular hamiltonian system with weak force." Annales de l'I.H.P. Analyse non linéaire 10.2 (1993): 215-238. <http://eudml.org/doc/78301>.

@article{Tanaka1993,
author = {Tanaka, Kazunaga},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {singular potential; minimax methods; periodic solutions; Hamiltonian systems; Morse index},
language = {eng},
number = {2},
pages = {215-238},
publisher = {Gauthier-Villars},
title = {Non-collision solutions for a second order singular hamiltonian system with weak force},
url = {http://eudml.org/doc/78301},
volume = {10},
year = {1993},
}

TY - JOUR
AU - Tanaka, Kazunaga
TI - Non-collision solutions for a second order singular hamiltonian system with weak force
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1993
PB - Gauthier-Villars
VL - 10
IS - 2
SP - 215
EP - 238
LA - eng
KW - singular potential; minimax methods; periodic solutions; Hamiltonian systems; Morse index
UR - http://eudml.org/doc/78301
ER -

References

top
  1. [AC1] A. Ambrosetti and V. CotiZELATI, Critical points with lack of compactness and applications to singular dynamical system, Annali Mat. Pura Appl., Vol. 149, 1987, pp. 237-259. Zbl0642.58017MR932787
  2. [AC2] A. Ambrosetti and V. CotiZELATI, Periodic solutions of singular dynamical systems, in Periodic solutions of Hamiltonian systems and related topics, P. H. RABINOWITZ et al. Eds., V209, NATO ASI Series, Reidel, 1987, pp. 1-10. Zbl0632.34042MR920605
  3. [AC3] A. Ambrosetti and V. CotiZELATI, Noncollision orbits for a class of Keplerianlike potentials, Ann. Inst. Henri Poincaré, Analyse non linéaire, Vol. 5, 1988, pp. 287-295. Zbl0667.58055MR954474
  4. [AC4] A. Ambrosetti and V. CotiZELATI, Perturbation of Hamiltonian systems with Keplerian potentials, Math. Z., Vol. 201, 1989, pp. 227-242. Zbl0653.34032MR997224
  5. [BL] A. Bahri and P.L. Lions, Morse index of some min-max critical points, I. Application to multiplicity results, Comm. Pure Appl. Math., Vol. 41, 1988, pp. 1027-1037. Zbl0645.58013MR968487
  6. [BR] A. Bahri and P.H. Rabinowitz, A minimax method for a class of Hamiltonian systems with singular potentials, J. Funct. Anal., Vol. 82, 1989, pp. 412-428. Zbl0681.70018MR987301
  7. [C] V. Coti Zelati, Periodic solutions for a class of planar, singular dynamical systems, J. Math. Pure Appl., Vol. 68, 1989, pp. 109-119. Zbl0633.34034MR985956
  8. [DG] M. Degiovanni and F. Giannoni, Dynamical systems with Newtonian type potentials, Annali Scuola Norm. Sup. Pisa, Vol. 15, 1988, pp. 467-494. Zbl0692.34050MR1015804
  9. [DGM] M. Degiovanni, F. Giannoni and A. Marino, Periodic solutions of dynamical systems with Newtonian type potentials, in Periodic solutions of Hamiltonian systems and related topics, P. H. RABINOWITZ et al. Eds., V209, NATO ASI Series, Reidel, 1987, pp. 111-115. Zbl0632.34038MR920613
  10. [Go] W.B. Gordon, Conseruative dynamical systems involving strong forces, Trans. Amer. Math. Soc., Vol. 204, 1975, pp. 113-135. Zbl0276.58005MR377983
  11. [Gr1] C. Greco, Periodic solutions of a class of singular Hamiltonian systems, Nonlinear Analysis, T.M.A., Vol. 12, 1988, pp. 259-269. Zbl0648.34048MR928560
  12. [GR2] C. Greco, Remarks on periodic solutions for some dynamical systems with singularities, in Periodic solutions of Hamiltonian systems and related topics, P. H. RABINOWITZ et al. Eds., V209, NATO ASI Series, Reidel, 1987, pp. 169-173. Zbl0632.34043MR920620
  13. [LS] A.C. Lazer and S. Solimini, Nontrivial solutions of operator equations and Morse indices of critical points of min-max type, Nonlinear Analysis, T.M.A., Vol. 12, 1988, pp. 761-775. Zbl0667.47036MR954951
  14. [LF] L.A. Lyusternik and A.I. Fet, Variational problems on closed manifolds, Dokl. Akad. Nauk. USSR, N.S., Vol. 81, 1951, pp. 17-18. Zbl0045.20903MR44760
  15. [R] P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conf. Ser. in Math., Vol. 65, Amer. Math. Soc., Providence, 1986. Zbl0609.58002MR845785
  16. [Sc] J.T. Schwartz, Nonlinear functionalAnalysis, Gordon and Breach, New York, 1969. Zbl0203.14501MR433481
  17. [ST] E. Serra and S. Terracini, Noncollision solutions to some singular minimization problems with Keplerian-like potentials, preprint. Zbl0813.70006MR1256169
  18. [T] K. Tanaka, Morse indices at critical points related to the symmetric mountain pass theorem and applications, Comm. Partial Diff. Eq., Vol. 14, 1989, pp. 99- 128. Zbl0669.34035MR973271
  19. [V] C. Viterbo, Indice de Morse des points critiques obtenus par minimax, Ann. Inst. Henri Poincaré, Analyse non linéaire, Vol. 5, 1988, pp. 221-225. Zbl0695.58007MR954472
  20. [BenFo] V. Benci and D. Fortunato, Subharmonic solutions of prescribed minimal period for autonomous differential equations, in Recent advances in Hamiltonian systems. Dell'Antonio e D'Onofrio Eds., World Sci., Singapore, 1986. Zbl0663.70028MR902625
  21. [Bea] A. Bealieu, Étude de solutions généralisées pour un système hamiltonien avec potentiel singulier, Duke Math. J., Vol. 67, 1992, pp. 21-37. Zbl0758.35016MR1174601
  22. [CS] V. Coti Zelati and E. Serra, Collisions and non-collisions solutions for a class of Keplerian-like dynamical system, preprint. Zbl0832.70009MR1313812

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.