Classes caractéristiques secondaires des fibrés plats

Christophe Soulé

Séminaire Bourbaki (1995-1996)

  • Volume: 38, page 411-424
  • ISSN: 0303-1179

How to cite

top

Soulé, Christophe. "Classes caractéristiques secondaires des fibrés plats." Séminaire Bourbaki 38 (1995-1996): 411-424. <http://eudml.org/doc/110222>.

@article{Soulé1995-1996,
author = {Soulé, Christophe},
journal = {Séminaire Bourbaki},
keywords = {secondary characteristic classes; flat vector bundles},
language = {fre},
pages = {411-424},
publisher = {Société Mathématique de France},
title = {Classes caractéristiques secondaires des fibrés plats},
url = {http://eudml.org/doc/110222},
volume = {38},
year = {1995-1996},
}

TY - JOUR
AU - Soulé, Christophe
TI - Classes caractéristiques secondaires des fibrés plats
JO - Séminaire Bourbaki
PY - 1995-1996
PB - Société Mathématique de France
VL - 38
SP - 411
EP - 424
LA - fre
KW - secondary characteristic classes; flat vector bundles
UR - http://eudml.org/doc/110222
ER -

References

top
  1. [1] S. Bloch - Some elementary Theorems about Algebraic Cycles on Abelian Varieties, Inventiones Math.37 (1976), 215-228. Zbl0371.14007MR429883
  2. [2] S. Bloch - Applications of the dilogarithm function in algebraic K-theory and algebraic geometry, Int. Symposium on Alg. Geom., Kyoto (1977), 103-114. Zbl0416.18016MR578856
  3. [3] A. Borel - Topics in the Homology Theory of Fibre Bundles, Springer LNM36 (1967). Zbl0158.20503MR221507
  4. [4] A. Borel - Stable real cohomology of arithmetic groups, Ann. Sci. ENS (4) 7 (1974), 235-272. Zbl0316.57026MR387496
  5. [5] A. Borel - Stable real cohomology of arithmetic groups II, in "Manifolds and Lie groups" , Papers in honour of Y. Matsushima, Birkhäuser, Progress in Math.14 (1981), 21-55. Zbl0483.57026MR642850
  6. [6] A. Borel, J. Yang - The rank conjecture for number fields, Math. Research Letters1 (1994), 689-699. Zbl0841.19002MR1306014
  7. [7] J.-L. Brylinski - Comparison of the Beilinson-Chern classes with the Chern-Cheeger-Simons classes, (1993), preprint. MR1667678
  8. [8] J. Carlson, D. Toledo - Harmonic mappings of Kähler manifolds to locally symmetric spaces, Publ. Math. IHES69 (1989), 173-201. Zbl0695.58010MR1019964
  9. [9] J. Cheeger, J. Simons - Differential characters and geometric invariants, in Geometry and Topology, Springer LNM1167 (1985), 50-80. Zbl0621.57010MR827262
  10. [10] S.S. Chern, J. Simons - Characteristic forms and geometric invariants, Annals of Math.99 (1974), 48-69. Zbl0283.53036MR353327
  11. [11] K. Corlette - Flat G-bundles with canonical metrics, J. Differential Geometry28 (1988), 361-382. Zbl0676.58007MR965220
  12. [12] K. Corlette, H. Esnault - Classes of local systems of hermitian vector spaces, appendice à "Eta invariants, differential characters and flat vector bundles" de J.-M. Bismut (1995), preprint. MR2129894
  13. [13] P. Deligne - Travaux de Griffiths, Sém. Bourbaki, exp. n° 376, Springer LNM180 (1971), 213-237. Zbl0208.48601
  14. [14] P. Deligne - A quoi servent les motifs ?, in "Motives", Proceedings Symposia Pure Math.55 Part 1 (1994), 143-161. Zbl0811.14001MR1265528
  15. [15] S.K. Donaldson - Twisted harmonic maps and self-duality equations, Proc. London Math. Soc.55 (1987), 127-131. Zbl0634.53046MR887285
  16. [16] J. Dupont - Curvature and characteristic classes, Springer LNM640 (1978). Zbl0373.57009MR500997
  17. [17] J. Dupont, R. Hain, S. Zucker - Regulators and characteristic classes of flat bundles, (1992), preprint. Zbl0976.14005MR1736876
  18. [18] H. Esnault - Recent developments on characteristic classes of flat bundles on complex algebraic manifolds, (1996), preprint. MR1421952
  19. [19] H. Esnault, E. Viehweg - Deligne-Beilinson cohomology, in "Beilinson's Conjectures on Special Values of L-Functions", Perspectives in Math.4 (1988), 43-91. Zbl0656.14012MR944991
  20. [20] H. Gillet, C. Soulé - Arithmetic Chow groups and differential characters, in "Algebraic K-theory : connections with geometry and topology", Kluwer Academic Publishers (1989), 30-68. Zbl0719.14003MR1045844
  21. [21] P. Griffiths - Periods of integrals on algebraic manifolds, III (some global differential-geometric properties of the period mapping), Publ. Math. IHES38 (1970), 125-180. Zbl0212.53503MR282990
  22. [22] U. Jannsen - Motivic sheaves and filtrations on Chow groups, in "Motives" , Proceedings Symposia Pure Math.55 Part 1 (1994), 245-302. Zbl0811.14004MR1265533
  23. [23] F. Kamber, Ph. Tondeur - Foliated bundles and characteristic classes, Springer LNM493 (1975). Zbl0308.57011MR402773
  24. [24] M. Karoubi - Classes caractéristiques de fibrés feuilletés, holomorphes ou algébriques, K-Theory8 (1994), 153-211. Zbl0833.57012MR1273841
  25. [25] N. Katz, T. Oda - On the differentiation of De Rham cohomology classes with respect to parameters, J. Math. Kyoto Univ.8-2 (1968), 199-213. Zbl0165.54802MR237510
  26. [26] R. Narasimhan, S. Ramanan - Existence of universal connections I, II, American J. Math.83 (1961), 563-572 ; 85 (1963), 223-231. Zbl0117.39002MR133772
  27. [27] P. Pansu - Sous-groupes discrets des groupes de Lie : rigidité, arithméticité, Sém. Bourbaki, exp. n° 778, Astérisque227 (1995), 69-105. Zbl0835.22011MR1321644
  28. [28] A. Reznikov - Rationality of secondary classes, J. Differential Geometry, à paraître. Zbl0874.32009MR1412681
  29. [29] A. Reznikov - All regulators of flat bundles are torsion, Annals of Math.141 (1995), 373-386. Zbl0865.14003MR1324139
  30. [30] J. Sampson - Applications of harmonic maps to Kähler geometry, in "Complex Differential Geometry and Nonlinear Differential Equations", Contemp. Math.49 (1986), 125-133. Zbl0605.58019MR833809
  31. [31] C.T. Simpson - Moduli of representations of the fundamental group of a smooth projective variety II, Publ. Math. IHES80 (1994), 5-79. Zbl0891.14006MR1320603
  32. [32] C. Soulé - Connexions et classes caractéristiques de Beilinson, in "Algebraic K-Theory and Algebraic Number Theory", Contemporary Math.83 (1989), 349-376. Zbl0695.14003MR991985

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.