L'équation de la chaleur associée à la courbure de Ricci

Jean Pierre Bourguignon

Séminaire Bourbaki (1985-1986)

  • Volume: 28, page 45-61
  • ISSN: 0303-1179

How to cite

top

Bourguignon, Jean Pierre. "L'équation de la chaleur associée à la courbure de Ricci." Séminaire Bourbaki 28 (1985-1986): 45-61. <http://eudml.org/doc/110070>.

@article{Bourguignon1985-1986,
author = {Bourguignon, Jean Pierre},
journal = {Séminaire Bourbaki},
keywords = {Four-manifolds with positive curvature operator; Ricci curvature; Riemannian metrics},
language = {fre},
pages = {45-61},
publisher = {Société Mathématique de France},
title = {L'équation de la chaleur associée à la courbure de Ricci},
url = {http://eudml.org/doc/110070},
volume = {28},
year = {1985-1986},
}

TY - JOUR
AU - Bourguignon, Jean Pierre
TI - L'équation de la chaleur associée à la courbure de Ricci
JO - Séminaire Bourbaki
PY - 1985-1986
PB - Société Mathématique de France
VL - 28
SP - 45
EP - 61
LA - fre
KW - Four-manifolds with positive curvature operator; Ricci curvature; Riemannian metrics
UR - http://eudml.org/doc/110070
ER -

References

top
  1. [1] T. Aubin, Sur la courbure scalaire des variétés riemanniennes compactes, C. R. Acad. Sci. Paris262 (1966), 130-133. Zbl0139.39104MR195027
  2. [2] T. Aubin, Métriques riemanniennes et courbure, J. Differential Geom.4 (1970), 383-424. Zbl0212.54102MR279731
  3. [3] T. Aubin, Equations différentielles non linéaires et le problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl.55 (1976), 269-296. Zbl0336.53033MR431287
  4. [4] J. Bemelmans, M. Min'oo, E. Ruh, Smoothing Riemannian metrics, Preprint, Bonn University (1984). MR767363
  5. [5] P. Berard, The Bochner technique revisited, Preprint, Université de Savoie (1985). 
  6. [6] A. Besse, Einstein manifolds, Ergebn. Math., Springer, Berlin-Heidelberg-New York, (1986). Zbl0613.53001MR867684
  7. [7] J.P. Bourguignon, L'espace des métriques riemanniennes d'une variété compacte, Thèse d'Etat, Université Paris VII (1974). 
  8. [8] J.P. Bourguignon, Premières formes de Chern des variétés kählériennes compactes (d'après E. Calabi, T. Aubin et S.T. Yau), in Séminaire Bourbaki 1977-1978, Exposé n°507, Lecture Notes in Math. n°710, Springer, Berlin (1979), 1-21. Zbl0413.53035MR554212
  9. [9] J.P. Bourguignon, Ricci curvature and Einstein metrics, in Global Differential Geometry and Global Analysis, Lecture Notes in Math. n°838, Springer, Berlin (1981), 42-63. Zbl0437.53029MR636265
  10. [10] J.P. Bourguignon, H. Karcher, Curvature operators : pinching estimates and geometric examples, Ann. Sci. Ec. Norm. Sup. Paris11 (1978), 71-92. Zbl0386.53031MR493867
  11. [11] K.A. Brakke, The motion of a surface by its mean curvature, Math. Notes n°20, Princeton Univ. Press, Princeton (1978). Zbl0386.53047MR485012
  12. [12] D. Deturck, Existence of metrics with prescribed Ricci curvature : local theory, Inventiones Math.65 (1981), 179-207. Zbl0489.53014MR636886
  13. [13] D. Deturck, Deforming metrics in the direction of their Ricci tensors, J. Differential Geom.18 (1983), 157-162 ; idem : improved, to appear. Zbl0517.53044MR697987
  14. [14] D. Deturck, J.L. Kazdan, Some regularity theorems in Riemannian geometry, Ann. Sci. Ec. Norm. Sup. Paris14 (1981), 249-260. Zbl0486.53014MR644518
  15. [15] P. Dombrowski, 150 Years after Gauss' "Disquisitiones generales circa superficies curvas", Astérisque n°62 (1979). Zbl0406.01007MR535996
  16. [16] J. Eells, J.H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math.86 (1964), 109-160. Zbl0122.40102MR164306
  17. [17] P. Ehrlich, Metric deformations of curvature I : local convex deformations, Geom. Dedicata5 (1976), 1-23. Zbl0345.53024MR487886
  18. [18] P. Ehrlich, Metric deformations of curvature II : compact 3-manifolds, Geom. Dedicata5 (1976), 147-161. Zbl0364.53017MR487887
  19. [19] H. Eliasson, On variations of metrics, Math. Scand.29 (1971), 317-327. Zbl0238.53024MR312427
  20. [20] R.S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc.7 (1982), 65-222. Zbl0499.58003MR656198
  21. [21] R.S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom.17 (1982), 255-306. Zbl0504.53034MR664497
  22. [22] R.S. Hamilton, Four-manifolds with positive curvature operator, Preprint, U.C. San Diego (1985). MR862046
  23. [23] G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Differential Geom.20 (1984), 237-266. Zbl0556.53001MR772132
  24. [24] A. Inoue, On Yamabe's problem by a modified direct method, Tôhoku Math. J. (1982), 499-507. Zbl0533.53041MR685419
  25. [25] J.L. Kazdan, F. Warner, Prescribing curvatures, in Differential GeometryProc. Amer. Math. Soc. Symp. Pure Math.XXVII, Stanford (1975), 309-319. Zbl0313.53017MR394505
  26. [26] C. Margerin, Pointwise pinched manifolds are space forms, in Geometric measure theory, Amer. Math. Soc. Proc. Symp. Pure Math.44, Arcata (1985). Zbl0587.53042MR840282
  27. [27] M. Min'oo, E. Ruh, Curvature deformations, Preprint, Bonn University (1985). MR859584
  28. [28] G. Ricci-Curbastro, Direzioni e invarianti principali di una varietà qualunque, Atti Real Inst. Venezio, 63 (1904), 1233-1239. JFM35.0145.01
  29. [29] B. Riemann, Über die Hypothesen, welche der Geometrie zur Grunde liegen, in Gaussche Flächentheorie, Riemannsche Räume und Minkowski-Welt, Teubner-Archiv zur Mathematik, Band 1 (1984), 68-83. 
  30. [30] E. Ruh, Riemannian manifolds with bounded curvature ratios, J. Differential Geom.17 (1982), 255-206. Zbl0508.53053MR683169
  31. [31] R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom.20 (1984), 479-495. Zbl0576.53028MR788292
  32. [32] R. Schoen, S.T. Yau, Complete 3-dimensional manifolds with positive Ricci curvature and scalar curvature, in Seminar on Differential Geometry, ed. by S.T. Yau, Ann. Math. Studies n°102, Princeton Univ. Press, Princeton (1982), 209-228. Zbl0481.53036MR645740
  33. [33] Séminaire Palaiseau1978, Première classe de Chern et courbure de Ricci : preuve de la conjecture de Calabi, Astérisque n°58 (1978). Zbl0397.35028
  34. [34] H. Yamabe, On a deformation of Riemannian structures on compact manifolds, Osaka J. Math.12 (1960), 21-37. Zbl0096.37201MR125546
  35. [35] S.T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation I, Comm. Pure Appl. Math.XXXI (1978), 339-411. Zbl0369.53059MR480350

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.