Algèbres 𝒲 et équations non-linéaires

Pierre van Moerbeke

Séminaire Bourbaki (1997-1998)

  • Volume: 40, page 105-129
  • ISSN: 0303-1179

How to cite


van Moerbeke, Pierre. "Algèbres $\mathcal {W}$ et équations non-linéaires." Séminaire Bourbaki 40 (1997-1998): 105-129. <>.

author = {van Moerbeke, Pierre},
journal = {Séminaire Bourbaki},
keywords = {-algebras; nonlinear equations; second symplectic structure; Hamiltonian vectors fields},
language = {fre},
pages = {105-129},
publisher = {Société Mathématique de France},
title = {Algèbres $\mathcal \{W\}$ et équations non-linéaires},
url = {},
volume = {40},
year = {1997-1998},

AU - van Moerbeke, Pierre
TI - Algèbres $\mathcal {W}$ et équations non-linéaires
JO - Séminaire Bourbaki
PY - 1997-1998
PB - Société Mathématique de France
VL - 40
SP - 105
EP - 129
LA - fre
KW - -algebras; nonlinear equations; second symplectic structure; Hamiltonian vectors fields
UR -
ER -


  1. [1] M. Adler : On a trace functional for formal pseudo-differential operators and the symplectic structure of the KdV equations, Inv. Math.50, 219-248 (1979). Zbl0393.35058
  2. [2] M. Adler, P. van Moerbeke: Completely integrable systems, Euclidean Lie algebras and Curves, Adv. Math.38, 267-317 (1980). Zbl0455.58017
  3. [3] M. Adler, P. van Moerbeke: Birkhoff strata, Bäcklund transformations and regularization of isospectral operators, Adv. Math.108, 140-204 (1994). Zbl0814.35114
  4. [4] M. Adler, P. van Moerbeke: A matrix integral solution to two-dimensional Wp- Gravity, Comm. Math. Phys.147, 25-56 (1992). Zbl0756.35074
  5. [5] M. Adler, P. van Moerbeke : Compatible Poisson structures and the Virasoro algebra, Comm. Pure and Appl. Math.47, 5-37 (1994). Zbl0801.58014
  6. [6] M. Adler, A. Morozov, T. Shiota and P. van Moerbeke : A matrix integral solution to [P,Q] = P and matrix Laplace transforms, Comm. Math. Phys.180, 233-263 (1996). Zbl0858.35109
  7. [7] M. Adler, T. Shiota and P. van Moerbeke : A Lax pair representation for the vertex operator and the central extension, Comm. Math. Phys.171, 547-588 (1995). Zbl0839.35116
  8. [8] M. Adler, T. Shiota and P. van Moerbeke : From the w∞-algebra to its central extension: a τ-function approach, Physics Letters A194, 33-43 (1994). Zbl0961.37514
  9. [9] M. Adler, T. Shiota and P. van Moerbeke : Random matrices, vertex operators and the Virasoro algebra, Phys. Lett. A208, 67-78 (1995). Zbl1020.82577
  10. [10] M. Adler, T. Shiota and P. van Moerbeke : Random matrices, Virasoro algebras and non-commutative KP, Duke math. J.94, 379-431 (1998). Zbl1061.37047
  11. [11] B. Bakalov, E. Horozov and M. Yakimov : General methods for constructing bispectral operators , Phys. LettersA, 22259-66 (1996). Zbl0972.37545
  12. [12] Bessis, D., Itzykson, Cl., Zuber, J.-B. : Quantum field theory techniques in graphical enumeration, Adv. Appl. Math.1, 109-157 (1980). Zbl0453.05035
  13. [13] P. Bouwknegt, K. Schoutens: W-symmetry in conformal field theory, Phys. Rep.223, 183-286 (1993). 
  14. [14] E. Date, M. Jimbo, M. Kashiwara, T. Miwa: Transformation groups for soliton equations, Proc. RIMS Symp. Nonlinear integrable systems, Classical and quantum theory (Kyoto1981), pp. 39-119. Singapore: World Scientific (1983). Zbl0571.35098
  15. [15] L. Dickey: Soliton equations and integrable systems, World Scientific (1991). Zbl0753.35075
  16. [16] L. Dickey : Additional symmetries of KP, Grassmannian, and the string equation, preprint 1992. Zbl1020.37555
  17. [17] L. Dickey: Lectures on classical W-algebras (Cortona Lectures), Acta Appl. Math.47, 243-321 (1997). Zbl0882.58024
  18. [18] P. Di Francesco, CI. Itzykson, J.-B. Zuber: Classical W-algebras, Comm. Math. Phys.140, 543-567 (1991). Zbl0752.17026
  19. [19] F. Dyson : Fredholm determinants and inverse scattering problems, Commun. Math. Phys.47, 171-183 (1976). Zbl0323.33008
  20. [20] F. Dyson: Statistical theory of energy levels of complex systems, I, II and III, J. Math Phys3140-156, 157-165, 166-175 (1962). Zbl0105.41604
  21. [21] J. Fastré: Boson-correspondence for W-algebras, Bäcklund-Darboux transformations and the equation [L, P] = Ln, Bull. des Sciences Math. (1997) 
  22. [22] V.A. Fateev, S.L. Lukyanov : Additional symmetries and exactly solvable models of two-dimensional conformal field theory, Int. J. Modern Phys. A3507 (1988). 
  23. [23] L. Fehér, L.O.' Raifeartaigh, P. Ruelle, I. Tsutsui, A. Wipf: On Hamiltonian reductions of the Wess-Zumino-Novikov-Witten theories, Phys. reports222(1),1-64 (1992). 
  24. [24] E. Frenkel, V. Kac, A. Radul, W. Wang:W1+∞ and WglN with central charge N, Comm. Math. Phys.170, 337-357 (1995). Zbl0838.17028
  25. [25] E. Frenkel and N. Reshetikin: Quantum affine algebras and deformations of the Virasoro and W-algebras, Comm. Math. Physics (1997). Zbl0869.17014
  26. [26] I.M. Gardner: KdV equation and generalizations IV, J. Math. Phys.12, 1548-1551 (1971). Zbl0283.35021
  27. [27] I.M. Gel'fand, L. Dickey: Family of Hamiltonian structures connected with integrable non-linear differential equations, Funct. Anal. Appl.2, 92-93 (1968). 
  28. [28] I.M. Gel'fand, D.B. Fuks: Cohomologies of the Lie algebra of vector fields on the circle, Funct. Anal. Appl.2, 92-93 (1968). Zbl0176.11501
  29. [29] J.-L. Gervais: Infinite family of polynomial functions of the Virasoro generators with vanishing Poisson bracket, Phys. letters16013, 277 (1985). 
  30. [30] L. Haine, E. Horozov : Toda Orbits of Laguerre Polynomials and Representations of the Virasoro Algebra, Bulletin des Sciences Math. (1993). Zbl0831.17011
  31. [31] M. Jimbo, T. Miwa, Y. Mori and M. Sato: Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent, Physica1D, 80-158 (1980). Zbl1194.82007
  32. [32] V. Kac, A. Radul: Quasifinite highest weight modules over the Lie algebra of differential operators on the circle, Comm. Math. Phys.157, 429-457 (1993). Zbl0826.17027
  33. [33] V.G. Kac, A.K. Raina: Bombay lectures on highest weight representations of infinite dimensional Lie Algebras, Adv. Series Math. Phys. vol. 2, 1987. Zbl0668.17012
  34. [34] V. Kac, A. Schwarz: Geometric interpretation of partition function of 2D-gravity, Phys. lett.257B, 329-334 (1991). 
  35. [35] A.A. Kirillov: Orbits of the group of diffeomorphisms of a circle and local Lie superalgebras, Funkt. Anal. Appl.21, 19-55 (1981). Zbl0474.58003
  36. [36] M. Kontsevich: Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys.147, 1-23 (1992). Zbl0756.35081
  37. [37] F. Magri: A simple model of the integrable Hamiltonian equation, J. Math. Phys.19, 1156-1162 (1978). Zbl0383.35065
  38. [38] M.L. Mehta: Random matrices, 2nd ed. Boston: Acad. Press, 1991. Zbl0780.60014
  39. [39] A.Y. Orlov, E.I. Schulman: Additional Symmetries for Integrable and Conformal Algebra Representation, Letters in Math. Phys.12, 171-179 (1986). Zbl0618.35107
  40. [40] C.E. Porter and N. Rosenzweig, Statistical properties of atomic and nuclear spectra, Ann. Acad. Sci. Fennicae, Serie A, VIPhysica44, 1-66 (1960); Repulsion of energy levels in complex atomic spectra, Phys. Rev120, 1698-1714 (1960). Zbl0092.23304
  41. [41] A. Radul: Lie algebras of differential operators, their central extensions, and W-algebras, Funct. Anal. Appl.25, 33-49 (1991). Zbl0809.47044
  42. [42] P. Sarnak: Arithmetic quantum chaos, Israel Math. Conf. Proceedings, 8, 183-236 (1995). Zbl0831.58045
  43. [43] K. Takasaki, T. Takebe : Integrable hierarchies and dispersionless limit, Reviews in Math. Phys.7, 743-808 (1995) . Zbl0838.35117
  44. [44] C.A. Tracy, H. Widom: Level-spacings distribution and the Airy kernel, Comm. Math. Phys.159, 151-174 (1984). Zbl0789.35152
  45. [45] K. Ueno, K. Takasaki : Toda Lattice Hierarchy, Adv. Studies in Pure Math.4, 1-95 (1984). Zbl0577.58020
  46. [46] J. van de Leur: The W1+∞(gls)-symmetries of the s-component KP hierarchy, J. of Math. Phys.37, 2315-2337 (1996). Zbl0864.35096
  47. [47] P. van Moerbeke : Integrable foundations of string theory, in Lectures on Integrable systems, Proceedings of the CIMPA-school, 1991, Ed.: O. Babelon, P. Cartier, Y. Kosmann-Schwarzbach, World scientific, 163-267 (1994). 
  48. [48] P. van Moerbeke: The spectrum of random matrices and integrable systems, Group 21, Physical applications and Mathematical aspects of Geometry, Groups and Algebras, Vol.II, 835-852, Eds. : H.-D. Doebner, W. Scherer, C. Schulte, World scientific, Singapore, 1997. 
  49. [49] P. van Moerbeke: Cours à l'Institut H. Poincaré (automne 1996). 
  50. [50] E.P. Wigner:On the statistical distribution of the widths and spacings of nuclear resonance levels, Proc. Cambr. Phil. Soc.47, 790-798 (1951). Zbl0044.44203
  51. [51] Witten, Ed. : Two-dimensional gravity and intersection theory of moduli space, Harvard University lecture, May 1990, Journal of diff. geometry, 1991. Zbl0757.53049
  52. [52] V. Zakharov, L.D. Faddeev: The KdV equation is a completely integrable Hamiltonian system, Funct. Anal. Appl.5, 18-27 (1971). Zbl0257.35074
  53. [53] A.B. Zamolodchikov: Infinite additional symmetries in two-dimensional conformal quantum field theory, Theoret. Math. Phys.65, 1205 (1985). 

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.