Problèmes d’évolution liés à l’énergie de Ginzburg-Landau

Didier Smets[1]

  • [1] Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, 175 rue du Chevaleret,75013 Paris FRANCE

Séminaire Équations aux dérivées partielles (2002-2003)

  • Volume: 2002-2003, page 1-15

How to cite

top

Smets, Didier. "Problèmes d’évolution liés à l’énergie de Ginzburg-Landau." Séminaire Équations aux dérivées partielles 2002-2003 (2002-2003): 1-15. <http://eudml.org/doc/11054>.

@article{Smets2002-2003,
affiliation = {Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, 175 rue du Chevaleret,75013 Paris FRANCE},
author = {Smets, Didier},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {Ginzburg-Landau equation; vortex ring; Gross-Pitaevskii equation; Bose-Einstein condensates},
language = {fre},
pages = {1-15},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Problèmes d’évolution liés à l’énergie de Ginzburg-Landau},
url = {http://eudml.org/doc/11054},
volume = {2002-2003},
year = {2002-2003},
}

TY - JOUR
AU - Smets, Didier
TI - Problèmes d’évolution liés à l’énergie de Ginzburg-Landau
JO - Séminaire Équations aux dérivées partielles
PY - 2002-2003
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2002-2003
SP - 1
EP - 15
LA - fre
KW - Ginzburg-Landau equation; vortex ring; Gross-Pitaevskii equation; Bose-Einstein condensates
UR - http://eudml.org/doc/11054
ER -

References

top
  1. G. Alberti, S. Baldo et G. Orlandi, Variational convergence for functionals of Ginzburg-Landau type, préprint 2002. Zbl1160.35013MR2177107
  2. A. Ambrosetti et M. Struwe, Existence of steady vortex rings in an ideal fluid, Arch. Rational Mech. Anal. 108 (1989), 97-109. Zbl0694.76012MR1011553
  3. L. Ambrosio and M. Soner, A measure theoretic approach to higher codimension mean curvature flow, Ann. Sc. Norm. Sup. Pisa, Cl. Sci. 25 (1997), 27-49. Zbl1043.35136MR1655508
  4. F. Bethuel, H. Brezis et F. Hélein, Ginzburg-Landau vortices, Birkhäuser, Boston, 1994. Zbl0802.35142MR1269538
  5. F. Bethuel, H. Brezis et G. Orlandi, Asymptotics for the Ginzburg-Landau equation in arbitrary dimensions, J. Funct. Anal. 186 (2001), 432-520. Erratum 188 (2002), 548-549. Zbl1077.35047MR1864830
  6. F. Bethuel, G. Orlandi et D. Smets, Vortex rings for the Gross-Pitaevskii equation, Jour. Eur. Math. Soc., à paraître. Zbl1091.35085MR2041006
  7. F. Bethuel, G. Orlandi et D. Smets, Convergence of the parabolic Ginzburg-Landau equation to motion by mean curvature, préprint. Zbl1031.35026MR1988309
  8. K. Brakke, The motion of a surface by its mean curvature, Princeton University Press, 1978. Zbl0386.53047MR485012
  9. L. E. Fraenkel et M. S. Berger, A global theory of steady vortex rings in an ideal fluid, Acta Math. 132 (1974), 13-51. Zbl0282.76014MR422916
  10. H. Helmholtz, Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelwegungen entsprechen, J. Reine Angew. Math 55 (1858), 25-55. 
  11. G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Differential Geom. 20 (1984), 237-266. Zbl0556.53001MR772132
  12. G. Huisken, Asymptotic behavior for singularities of the mean curvature flow, J. Differential Geom. 31 (1990), 285-299. Zbl0694.53005MR1030675
  13. T. Ilmanen, Convergence of the Allen-Cahn equation to Brakke’s motion by mean curvature, J. Differential Geom. 38 (1993), 417-461. Zbl0784.53035
  14. T. Ilmanen, Elliptic regularization and partial regularity for motion by mean curvature, Mem. Amer. Math. Soc. 108 (1994), no. 520. Zbl0798.35066MR1196160
  15. F.H. Lin et T. Rivière, Complex Ginzburg-Landau equation in high dimension and codimension 2 area minimizing currents, J. Eur. Math. Soc. 1 (1999), 237-311. Erratum, Ibid. Zbl0939.35056MR1714735
  16. F.H. Lin et T. Rivière, A quantization property for static Ginzburg-Landau vortices, Comm. Pure Appl. Math. 54 (2001), 206-228. Zbl1033.58013MR1794353
  17. F.H. Lin et T. Rivière, A quantization property for moving line vortices, Comm. Pure Appl. Math. 54 (2001), 826-850. Zbl1029.35127MR1823421
  18. R.L. Jerrard, Vortex filament dynamics for Gross-Pitaevsky like equations, I, prépublication. Zbl1170.35318
  19. D.W. Moore et D.I. Pullin, On steady compressible flows with compact vorticity ; the compressible Hill’s spherical vortex, J. Fluid Mech. 374 (1998), 285-303. Zbl0936.76075
  20. T. Rivière, Line vortices in the U ( 1 ) Higgs model, ESAIM, C.O.C.V. 1 (1996), 77-167. Zbl0874.53019MR1394302
  21. R. Schoen et K. Uhlenbeck, A regularity theory for harmonic maps, J. Differential Geom. 17 (1982), 307-335. Zbl0521.58021MR664498
  22. E. Sandier et Sylvia Serfaty, High Kappa Limit of the Ginzburg-Landau Equations of Superconductivity, Duke Math. Journal, à paraître. 
  23. E. Sandier et Sylvia Serfaty, The decrease of bulk superconductivity near the second critical field in the Ginzburg-Landau model, prépublication. Zbl1030.82015
  24. M. Struwe, On the evolution of harmonic maps in higher dimensions, J. Diff. Geom. 28 (1988), 485-502. Zbl0631.58004MR965226
  25. C. Wang, On moving Ginzburg-Landau filament vortices, Max-Planck-Institut Leipzig, préprint. Zbl1063.35081

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.