Les équations d’Euler, des ondes et de Korteweg-de Vries comme limites asymptotiques de l’équation de Gross-Pitaevskii

Fabrice Béthuel; Raphaël Danchin; Philippe Gravejat; Jean-Claude Saut; Didier Smets

Séminaire Équations aux dérivées partielles (2008-2009)

  • Volume: 2008-2009, page 1-12

How to cite

top

Béthuel, Fabrice, et al. "Les équations d’Euler, des ondes et de Korteweg-de Vries comme limites asymptotiques de l’équation de Gross-Pitaevskii." Séminaire Équations aux dérivées partielles 2008-2009 (2008-2009): 1-12. <http://eudml.org/doc/11193>.

@article{Béthuel2008-2009,
author = {Béthuel, Fabrice, Danchin, Raphaël, Gravejat, Philippe, Saut, Jean-Claude, Smets, Didier},
journal = {Séminaire Équations aux dérivées partielles},
language = {fre},
pages = {1-12},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Les équations d’Euler, des ondes et de Korteweg-de Vries comme limites asymptotiques de l’équation de Gross-Pitaevskii},
url = {http://eudml.org/doc/11193},
volume = {2008-2009},
year = {2008-2009},
}

TY - JOUR
AU - Béthuel, Fabrice
AU - Danchin, Raphaël
AU - Gravejat, Philippe
AU - Saut, Jean-Claude
AU - Smets, Didier
TI - Les équations d’Euler, des ondes et de Korteweg-de Vries comme limites asymptotiques de l’équation de Gross-Pitaevskii
JO - Séminaire Équations aux dérivées partielles
PY - 2008-2009
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2008-2009
SP - 1
EP - 12
LA - fre
UR - http://eudml.org/doc/11193
ER -

References

top
  1. T. Alazard et R. Carles, WKB analysis for the Gross-Pitaevskii equation with non-trivial boundary conditions at infinity, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), no. 3, 959-977. Zbl1167.35328
  2. B. Alvarez-Samaniego et D. Lannes. Large time existence for 3D water-waves and asymptotics. Invent. Mat., 171(3) :485–541, 2008. Zbl1131.76012MR2372806
  3. W. Ben Youssef et T. Colin. Rigorous derivation of Korteweg-de Vries-type systems from a general class of nonlinear hyperbolic systems. M2AN Math. Model. Numer. Anal., 34(4) :873–911, 2000. Zbl0962.35152MR1784490
  4. S. Benzoni-Gavage, R. Danchin et S. Descombes, On the well-posedness of the Euler-Korteweg model in several space dimensions, Indiana Univ. Math. J., 56(4), (2007), 1499–1579. Zbl1125.76060MR2354691
  5. F. Béthuel, R. Danchin, et D. Smets. On the linear wave regime of the Gross-Pitaevskii equation. J. Anal. Math., sous presse, 2009. Zbl1202.35296
  6. F. Béthuel, P. Gravejat, J.-C. Saut, et D. Smets. On the Korteweg-de Vries long-wave approximation of the Gross-Pitaevskii equation I. Int. Math. Res. Not., sous presse, 2009. Zbl1183.35240
  7. F. Béthuel, P. Gravejat, J.-C. Saut, et D. Smets. On the Korteweg-de Vries long-wave approximation of the Gross-Pitaevskii equation II. prépublication 2009. Zbl1183.35240
  8. J.L. Bona, T. Colin, et D. Lannes. Long wave approximations for water waves. Arch. Ration. Mech. Anal., 178(3) :373–410, 2005. Zbl1108.76012MR2196497
  9. R. Carles, Semi-classical analysis for nonlinear Schrödinger equations. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008. Zbl1153.35070MR2406566
  10. D. Chiron et F. Rousset, Geometric optics and boundary layers for nonlinear Schrödinger equations, Communications in Mathematical Physics 288 (2009), no. 2, 503-546. Zbl1179.35303
  11. D. Chiron and F. Rousset. The KdV/KP-I limit of the nonlinear Schrödinger equation. prépublication 2008. Zbl1210.35229
  12. W. Craig. An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits. Comm. Partial Differential Equations, 10(8) :787–1003, 1985. Zbl0577.76030MR795808
  13. P. Gérard, Remarques sur l’analyse semi-classique de l’équation de Schrödinger non linéaire, Séminaire sur les Équations aux Dérivées Partielles, 1992–1993, Exp. No. XIII, École Polytechnique Palaiseau. Zbl0874.35111
  14. E. Grenier, Semiclassical limit of the nonlinear Schrödinger equation in small time, Proc. Amer. Math. Soc., 126 (1998), no. 2, 523–530. Zbl0910.35115MR1425123
  15. E.A. Kuznetsov and V.E. Zakharov. Multi-scales expansion in the theory of systems integrable by the inverse scattering transform. Phys. D, 18(1-3) :455–463, 1986. Zbl0611.35079
  16. G. Schneider and C.E. Wayne. The long-wave limit for the water wave problem I. The case of zero surface tension. Comm. Pure Appl. Math., 53(12) :1475–1535, 2000. Zbl1034.76011MR1780702
  17. J.D. Wright. Corrections to the KdV approximation for water waves. SIAM J. Math. Anal., 37(4) :1161–1206, 2005. Zbl1093.76010MR2192292

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.