Les équations d’Euler, des ondes et de Korteweg-de Vries comme limites asymptotiques de l’équation de Gross-Pitaevskii
Fabrice Béthuel; Raphaël Danchin; Philippe Gravejat; Jean-Claude Saut; Didier Smets
Séminaire Équations aux dérivées partielles (2008-2009)
- Volume: 2008-2009, page 1-12
Access Full Article
topHow to cite
topBéthuel, Fabrice, et al. "Les équations d’Euler, des ondes et de Korteweg-de Vries comme limites asymptotiques de l’équation de Gross-Pitaevskii." Séminaire Équations aux dérivées partielles 2008-2009 (2008-2009): 1-12. <http://eudml.org/doc/11193>.
@article{Béthuel2008-2009,
author = {Béthuel, Fabrice, Danchin, Raphaël, Gravejat, Philippe, Saut, Jean-Claude, Smets, Didier},
journal = {Séminaire Équations aux dérivées partielles},
language = {fre},
pages = {1-12},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Les équations d’Euler, des ondes et de Korteweg-de Vries comme limites asymptotiques de l’équation de Gross-Pitaevskii},
url = {http://eudml.org/doc/11193},
volume = {2008-2009},
year = {2008-2009},
}
TY - JOUR
AU - Béthuel, Fabrice
AU - Danchin, Raphaël
AU - Gravejat, Philippe
AU - Saut, Jean-Claude
AU - Smets, Didier
TI - Les équations d’Euler, des ondes et de Korteweg-de Vries comme limites asymptotiques de l’équation de Gross-Pitaevskii
JO - Séminaire Équations aux dérivées partielles
PY - 2008-2009
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2008-2009
SP - 1
EP - 12
LA - fre
UR - http://eudml.org/doc/11193
ER -
References
top- T. Alazard et R. Carles, WKB analysis for the Gross-Pitaevskii equation with non-trivial boundary conditions at infinity, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), no. 3, 959-977. Zbl1167.35328
- B. Alvarez-Samaniego et D. Lannes. Large time existence for 3D water-waves and asymptotics. Invent. Mat., 171(3) :485–541, 2008. Zbl1131.76012MR2372806
- W. Ben Youssef et T. Colin. Rigorous derivation of Korteweg-de Vries-type systems from a general class of nonlinear hyperbolic systems. M2AN Math. Model. Numer. Anal., 34(4) :873–911, 2000. Zbl0962.35152MR1784490
- S. Benzoni-Gavage, R. Danchin et S. Descombes, On the well-posedness of the Euler-Korteweg model in several space dimensions, Indiana Univ. Math. J., 56(4), (2007), 1499–1579. Zbl1125.76060MR2354691
- F. Béthuel, R. Danchin, et D. Smets. On the linear wave regime of the Gross-Pitaevskii equation. J. Anal. Math., sous presse, 2009. Zbl1202.35296
- F. Béthuel, P. Gravejat, J.-C. Saut, et D. Smets. On the Korteweg-de Vries long-wave approximation of the Gross-Pitaevskii equation I. Int. Math. Res. Not., sous presse, 2009. Zbl1183.35240
- F. Béthuel, P. Gravejat, J.-C. Saut, et D. Smets. On the Korteweg-de Vries long-wave approximation of the Gross-Pitaevskii equation II. prépublication 2009. Zbl1183.35240
- J.L. Bona, T. Colin, et D. Lannes. Long wave approximations for water waves. Arch. Ration. Mech. Anal., 178(3) :373–410, 2005. Zbl1108.76012MR2196497
- R. Carles, Semi-classical analysis for nonlinear Schrödinger equations. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008. Zbl1153.35070MR2406566
- D. Chiron et F. Rousset, Geometric optics and boundary layers for nonlinear Schrödinger equations, Communications in Mathematical Physics 288 (2009), no. 2, 503-546. Zbl1179.35303
- D. Chiron and F. Rousset. The KdV/KP-I limit of the nonlinear Schrödinger equation. prépublication 2008. Zbl1210.35229
- W. Craig. An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits. Comm. Partial Differential Equations, 10(8) :787–1003, 1985. Zbl0577.76030MR795808
- P. Gérard, Remarques sur l’analyse semi-classique de l’équation de Schrödinger non linéaire, Séminaire sur les Équations aux Dérivées Partielles, 1992–1993, Exp. No. XIII, École Polytechnique Palaiseau. Zbl0874.35111
- E. Grenier, Semiclassical limit of the nonlinear Schrödinger equation in small time, Proc. Amer. Math. Soc., 126 (1998), no. 2, 523–530. Zbl0910.35115MR1425123
- E.A. Kuznetsov and V.E. Zakharov. Multi-scales expansion in the theory of systems integrable by the inverse scattering transform. Phys. D, 18(1-3) :455–463, 1986. Zbl0611.35079
- G. Schneider and C.E. Wayne. The long-wave limit for the water wave problem I. The case of zero surface tension. Comm. Pure Appl. Math., 53(12) :1475–1535, 2000. Zbl1034.76011MR1780702
- J.D. Wright. Corrections to the KdV approximation for water waves. SIAM J. Math. Anal., 37(4) :1161–1206, 2005. Zbl1093.76010MR2192292
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.