WKB analysis for the Gross-Pitaevskii equation with non-trivial boundary conditions at infinity

Thomas Alazard; Rémi Carles

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 3, page 959-977
  • ISSN: 0294-1449

How to cite

top

Alazard, Thomas, and Carles, Rémi. "WKB analysis for the Gross-Pitaevskii equation with non-trivial boundary conditions at infinity." Annales de l'I.H.P. Analyse non linéaire 26.3 (2009): 959-977. <http://eudml.org/doc/78876>.

@article{Alazard2009,
author = {Alazard, Thomas, Carles, Rémi},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {semi-classical analysis; Gross-Pitaevskii equation; Zhidkov spaces; cubic-quintic nonlinearity},
language = {eng},
number = {3},
pages = {959-977},
publisher = {Elsevier},
title = {WKB analysis for the Gross-Pitaevskii equation with non-trivial boundary conditions at infinity},
url = {http://eudml.org/doc/78876},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Alazard, Thomas
AU - Carles, Rémi
TI - WKB analysis for the Gross-Pitaevskii equation with non-trivial boundary conditions at infinity
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 3
SP - 959
EP - 977
LA - eng
KW - semi-classical analysis; Gross-Pitaevskii equation; Zhidkov spaces; cubic-quintic nonlinearity
UR - http://eudml.org/doc/78876
ER -

References

top
  1. [1] Abdullaev F.Kh., Gammal A., Tomio L., Frederico T., Stability of trapped Bose–Einstein condensates, Phys. Rev. A63 (4) (2001) 043604. 
  2. [2] Alazard T., Carles R., Semi-classical limit of Schrödinger–Poisson equations in space dimension n 3 , J. Differential Equations233 (1) (2007) 241-275. Zbl1107.35018MR2290279
  3. [3] T. Alazard, R. Carles, Super-critical geometric optics for nonlinear Schrödinger equations, Preprint, arXiv:0704.2488. Zbl1179.35302
  4. [4] R. Anton, Cubic nonlinear Schrödinger equation on three dimensional balls with radial data, Comm. Partial Differential Equations, in press. Zbl1157.35101MR2475322
  5. [5] Anton R., Global existence for defocusing cubic NLS and Gross–Pitaevskii equations in exterior domains, J. Math. Pures Appl.89 (4) (2008) 335-354. Zbl1148.35081MR2401142
  6. [6] Bethuel F., Saut J.-C., Travelling waves for the Gross-Pitaevskii equation. I, Ann. Inst. H. Poincaré Phys. Théor.70 (2) (1999) 147-238. Zbl0933.35177MR1669387
  7. [7] Brenier Y., Convergence of the Vlasov–Poisson system to the incompressible Euler equations, Comm. Partial Differential Equations25 (3–4) (2000) 737-754. Zbl0970.35110MR1748352
  8. [8] Carles R., Geometric optics and instability for semi-classical Schrödinger equations, Arch. Ration. Mech. Anal.183 (3) (2007) 525-553. Zbl1134.35098MR2278414
  9. [9] Carles R., WKB analysis for nonlinear Schrödinger equations with potential, Commun. Math. Phys.269 (1) (2007) 195-221. Zbl1123.35062MR2274468
  10. [10] Colin T., Soyeur A., Some singular limits for evolutionary Ginzburg–Landau equations, Asymptotic Anal.13 (4) (1996) 361-372. Zbl0885.35127MR1425274
  11. [11] Dalfovo F., Giorgini S., Pitaevskii L.P., Stringari S., Theory of Bose–Einstein condensation in trapped gases, Rev. Mod. Phys.71 (3) (1999) 463-512. 
  12. [12] Gallo C., Schrödinger group on Zhidkov spaces, Adv. Differential Equations9 (5–6) (2004) 509-538. Zbl1103.35093MR2099970
  13. [13] C. Gallo, The Cauchy problem for defocusing nonlinear Schrödinger equations with non-vanishing initial data at infinity, Preprint. Zbl1156.35086MR2424376
  14. [14] Gammal A., Frederico T., Tomio L., Chomaz Ph., Atomic Bose–Einstein condensation with three-body interactions and collective excitations, J. Phys. B33 (2000) 4053-4067. 
  15. [15] Gasser I., Lin C.-K., Markowich P.A., A review of dispersive limits of (non)linear Schrödinger-type equations, Taiwanese J. Math.4 (4) (2000) 501-529. Zbl0972.35112MR1799752
  16. [16] P. Gérard, Remarques sur l'analyse semi-classique de l'équation de Schrödinger non linéaire, in: Séminaire sur les Équations aux Dérivées Partielles, 1992–1993, École polytech., Palaiseau, 1993, Exp. No. XIII. Zbl0874.35111
  17. [17] Gérard P., The Cauchy problem for the Gross–Pitaevskii equation, Ann. Inst. H. Poincaré Anal. Non Linéaire23 (5) (2006) 765-779. Zbl1122.35133
  18. [18] Grenier E., Semiclassical limit of the nonlinear Schrödinger equation in small time, Proc. Amer. Math. Soc.126 (2) (1998) 523-530. Zbl0910.35115
  19. [19] Josserand C., Pomeau Y., Nonlinear aspects of the theory of Bose–Einstein condensates, Nonlinearity14 (5) (2001) R25-R62. Zbl1037.82031
  20. [20] Lannes D., Sharp estimates for pseudo-differential operators with symbols of limited smoothness and commutators, J. Funct. Anal.232 (2) (2006) 495-539. Zbl1099.35191
  21. [21] Lin F., Zhang P., Semiclassical limit of the Gross–Pitaevskii equation in an exterior domain, Arch. Rational Mech. Anal.179 (1) (2006) 79-107. Zbl1079.76016MR2208290
  22. [22] Majda A., Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Applied Mathematical Sciences, vol. 53, Springer-Verlag, New York, 1984. Zbl0537.76001MR748308
  23. [23] Métivier G., Remarks on the well-posedness of the nonlinear Cauchy problem, in: Geometric Analysis of PDE and Several Complex Variables, Contemp. Math., vol. 368, Amer. Math. Soc., Providence, RI, 2005, pp. 337-356. Zbl1071.35074MR2127041
  24. [24] Michinel H., Campo-Táboas J., García-Fernández R., Salgueiro J.R., Quiroga-Teixeiro M.L., Liquid light condensates, Phys. Rev. E65 (2002) 066604. 
  25. [25] Pitaevskii L., Stringari S., Bose–Einstein Condensation, International Series of Monographs on Physics, vol. 116, The Clarendon Press, Oxford University Press, Oxford, 2003. Zbl1110.82002MR2012737
  26. [26] Sideris T., Formation of singularities in three-dimensional compressible fluids, Commun. Math. Phys.101 (1985) 475-485. Zbl0606.76088MR815196
  27. [27] Taylor M., Partial Differential Equations. III, Nonlinear Equations, Applied Mathematical Sciences, vol. 117, Springer-Verlag, New York, 1997. Zbl0869.35004MR1477408
  28. [28] Thomann L., Instabilities for supercritical Schrödinger equations in analytic manifolds, J. Differential Equations245 (1) (2008) 249-280. Zbl1157.35107MR2422717
  29. [29] P.E. Zhidkov, The Cauchy problem for a nonlinear Schrödinger equation, JINR Commun., P5-87-373, Dubna, 1987 (in Russian). 
  30. [30] Zhidkov P.E., Korteweg–de Vries and Nonlinear Schrödinger Equations: Qualitative Theory, Lecture Notes in Mathematics, vol. 1756, Springer-Verlag, Berlin, 2001. Zbl0987.35001MR1831831

Citations in EuDML Documents

top
  1. Fabrice Béthuel, Raphaël Danchin, Philippe Gravejat, Jean-Claude Saut, Didier Smets, Les équations d’Euler, des ondes et de Korteweg-de Vries comme limites asymptotiques de l’équation de Gross-Pitaevskii
  2. Rémi Carles, Bijan Mohammadi, Numerical aspects of the nonlinear Schrödinger equation in the semiclassical limit in a supercritical regime
  3. Rémi Carles, Bijan Mohammadi, Numerical aspects of the nonlinear Schrödinger equation in the semiclassical limit in a supercritical regime

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.