La diffraction en métrique de Schwarzschild : complétude asymptotique et résonances
Séminaire Équations aux dérivées partielles (Polytechnique) (1992-1993)
- page 1-13
Access Full Article
topHow to cite
topBachelot, A.. "La diffraction en métrique de Schwarzschild : complétude asymptotique et résonances." Séminaire Équations aux dérivées partielles (Polytechnique) (1992-1993): 1-13. <http://eudml.org/doc/112071>.
@article{Bachelot1992-1993,
author = {Bachelot, A.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {Schwarzschild metric; asymptotic completeness; diffraction; resonances},
language = {fre},
pages = {1-13},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {La diffraction en métrique de Schwarzschild : complétude asymptotique et résonances},
url = {http://eudml.org/doc/112071},
year = {1992-1993},
}
TY - JOUR
AU - Bachelot, A.
TI - La diffraction en métrique de Schwarzschild : complétude asymptotique et résonances
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1992-1993
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 13
LA - fre
KW - Schwarzschild metric; asymptotic completeness; diffraction; resonances
UR - http://eudml.org/doc/112071
ER -
References
top- [1] A. Bachelot, Gravitational Scattering of Electromagnetic Field by Schwarzschild Black-Hole, Ann. Inst. Henri PoincaréPhysique théorique, 54, 3, 1991, 261-320. Zbl0743.53037MR1122656
- [2] A. Bachelot, Scattering of eletromagnetic field by De Sitter-Schwarzschild Black-Hole, in "Non linear hyperbolic equations and field theory" Research Notes in Math. 253, 1992, Pitman. Zbl0823.35162MR1175199
- [3] A. Bachelot, A. Motet-Bachelot, Les résonances d'un trou noir de Schwarzschild, à paraître aux Ann. Inst. Heinri Poincaré physique théorique. Zbl0793.53094
- [4] A.L. Besse.Einstein Manifolds, SprinterVerlag1987. Zbl0613.53001MR867684
- [5] R. Carmona, One-Dimentional Schrödinger Operators with Random or Deterministic Potentials: New Spectral Types, J. Func. Anal.51, 1983, p.229-258. Zbl0516.60069MR701057
- [6] S. Chandrasekar, The mathematical theory of black-holes, Oxford University Press, New-York, 1983. Zbl0511.53076MR700826
- [7] Y. Choquet-Bruhat, D. Christodoulou.Existence of global solutions of the Yang-Mills Higgs and spinor field equations in 3+1 dimensions, Ann. Sci. Ecole Norm. Sup., 14, 1981, p. 481-506. Zbl0499.35076MR654209
- [8] D. Christodoulou, S. Klainerman.The Global Nonlinear Stability of the Minkowski Space, preprint 1959. Zbl0827.53055
- [9] Th. Damour, Black-Hole eddy currents, Phys. Rev.D18, 10, 1978, p. 3598, 3604.
- [10] J. Dimock, Scattering for the wave equation on the Schwarzschild metric, Gen. Rel. Grav.17, 4, 1985, p. 353-369. Zbl0618.35088MR788801
- [11] J. Dimock, B.S. Kay, Classical and Quantum scattering theory for linear scalar fields on the Schwarzschild metric I, Ann. Phys.175, 1987, p. 366-426. Zbl0628.53080MR887979
- [13] H. Kitada, Scattering theory for Schrödinger operators with long range potentials IL., J. Math. Soc. Japan, 30, 4, 1978, p.603-632. Zbl0388.35055MR634803
- [14] J.P. Nicolas, Non linear Klein-Gordon Equation in Schwarzschild like metric, Fourth International Conference on Hyperbolic Problems, Taormina, 1992, Vieweg Eds. Zbl1043.83526
- [15] R. Phillips, Scattering Theory for the Wave Equation with a Short Range Perturbation II, Indiana Univ. Math. J., 33, 6, 1984, p.831-846. Zbl0526.35066MR763944
- [16] W.T. Shu, Spin Field Equations and Yang-Mills Equation, Ph. D. Thesis, Princeton University, 1990.
- [17] M. Zworski, Distribution of Poles for Scattering on the Real Line, J. Funct. Anal.73, 1987, p. 277-296. Zbl0662.34033MR899652
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.