La diffraction en métrique de Schwarzschild : complétude asymptotique et résonances

A. Bachelot

Séminaire Équations aux dérivées partielles (Polytechnique) (1992-1993)

  • page 1-13

How to cite


Bachelot, A.. "La diffraction en métrique de Schwarzschild : complétude asymptotique et résonances." Séminaire Équations aux dérivées partielles (Polytechnique) (1992-1993): 1-13. <>.

author = {Bachelot, A.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {Schwarzschild metric; asymptotic completeness; diffraction; resonances},
language = {fre},
pages = {1-13},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {La diffraction en métrique de Schwarzschild : complétude asymptotique et résonances},
url = {},
year = {1992-1993},

AU - Bachelot, A.
TI - La diffraction en métrique de Schwarzschild : complétude asymptotique et résonances
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1992-1993
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 13
LA - fre
KW - Schwarzschild metric; asymptotic completeness; diffraction; resonances
UR -
ER -


  1. [1] A. Bachelot, Gravitational Scattering of Electromagnetic Field by Schwarzschild Black-Hole, Ann. Inst. Henri PoincaréPhysique théorique, 54, 3, 1991, 261-320. Zbl0743.53037MR1122656
  2. [2] A. Bachelot, Scattering of eletromagnetic field by De Sitter-Schwarzschild Black-Hole, in "Non linear hyperbolic equations and field theory" Research Notes in Math. 253, 1992, Pitman. Zbl0823.35162MR1175199
  3. [3] A. Bachelot, A. Motet-Bachelot, Les résonances d'un trou noir de Schwarzschild, à paraître aux Ann. Inst. Heinri Poincaré physique théorique. Zbl0793.53094
  4. [4] A.L. Besse.Einstein Manifolds, SprinterVerlag1987. Zbl0613.53001MR867684
  5. [5] R. Carmona, One-Dimentional Schrödinger Operators with Random or Deterministic Potentials: New Spectral Types, J. Func. Anal.51, 1983, p.229-258. Zbl0516.60069MR701057
  6. [6] S. Chandrasekar, The mathematical theory of black-holes, Oxford University Press, New-York, 1983. Zbl0511.53076MR700826
  7. [7] Y. Choquet-Bruhat, D. Christodoulou.Existence of global solutions of the Yang-Mills Higgs and spinor field equations in 3+1 dimensions, Ann. Sci. Ecole Norm. Sup., 14, 1981, p. 481-506. Zbl0499.35076MR654209
  8. [8] D. Christodoulou, S. Klainerman.The Global Nonlinear Stability of the Minkowski Space, preprint 1959. Zbl0827.53055
  9. [9] Th. Damour, Black-Hole eddy currents, Phys. Rev.D18, 10, 1978, p. 3598, 3604. 
  10. [10] J. Dimock, Scattering for the wave equation on the Schwarzschild metric, Gen. Rel. Grav.17, 4, 1985, p. 353-369. Zbl0618.35088MR788801
  11. [11] J. Dimock, B.S. Kay, Classical and Quantum scattering theory for linear scalar fields on the Schwarzschild metric I, Ann. Phys.175, 1987, p. 366-426. Zbl0628.53080MR887979
  12. [13] H. Kitada, Scattering theory for Schrödinger operators with long range potentials IL., J. Math. Soc. Japan, 30, 4, 1978, p.603-632. Zbl0388.35055MR634803
  13. [14] J.P. Nicolas, Non linear Klein-Gordon Equation in Schwarzschild like metric, Fourth International Conference on Hyperbolic Problems, Taormina, 1992, Vieweg Eds. Zbl1043.83526
  14. [15] R. Phillips, Scattering Theory for the Wave Equation with a Short Range Perturbation II, Indiana Univ. Math. J., 33, 6, 1984, p.831-846. Zbl0526.35066MR763944
  15. [16] W.T. Shu, Spin Field Equations and Yang-Mills Equation, Ph. D. Thesis, Princeton University, 1990. 
  16. [17] M. Zworski, Distribution of Poles for Scattering on the Real Line, J. Funct. Anal.73, 1987, p. 277-296. Zbl0662.34033MR899652

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.