Diffusion classique et quantique par un trou noir en formation

A. Bachelot

Séminaire Équations aux dérivées partielles (Polytechnique) (1995-1996)

  • page 1-18

How to cite

top

Bachelot, A.. "Diffusion classique et quantique par un trou noir en formation." Séminaire Équations aux dérivées partielles (Polytechnique) (1995-1996): 1-18. <http://eudml.org/doc/112126>.

@article{Bachelot1995-1996,
author = {Bachelot, A.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {wave operator; Klein-Gordon field; Doppler effect},
language = {fre},
pages = {1-18},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Diffusion classique et quantique par un trou noir en formation},
url = {http://eudml.org/doc/112126},
year = {1995-1996},
}

TY - JOUR
AU - Bachelot, A.
TI - Diffusion classique et quantique par un trou noir en formation
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1995-1996
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 18
LA - fre
KW - wave operator; Klein-Gordon field; Doppler effect
UR - http://eudml.org/doc/112126
ER -

References

top
  1. [1] A. Bachelot.Scattering of Scalar Fields by Spherical Gravitational Collapse. J. Math. Pures Appl. à paraître Zbl0872.53066
  2. [2] A. Bachelot.Gravitationnal Scattering of Electromagnetic Field by Schwarzchild Black Hole. Ann. Inst. Henri Poincaré - Physique théorique, 54 (3): 261-320, 1991. Zbl0743.53037MR1122656
  3. [3] A. Bachelot.La diffraction en métrique de Schwarzschild: complétude asymptotique et résonances. Séminaire X-E.D.P., exposé VIII, Ecole Polytechnique, 1993. Zbl0884.35157MR1240549
  4. [4] A. Bachelot.Asymptotic Completeness for the Klein-Gordon Equation on the Schwarzschild Metric. Ann. Inst. Henri Poincaré - Physique théorique, 61 (4): 411-441, 1994. Zbl0809.35141MR1311537
  5. [5] A. Bachelot, A. Motet-Bachelot.Les résonances d'un trou noir de Schwarzschild. Ann. Inst. Henri Poincaré - Physique théorique, 59 (1): 3-68, 1993. Zbl0793.53094MR1244181
  6. [6] N.D. Birrel, P.C.W. Davies.Quantum fields in curved space. Cambridge University Press, 1982. Zbl0476.53017MR652252
  7. [7] Y. Choquet-Bruhat.Hyperbolic partial differential equations on a manifold. In Wheeler De Witt, editor, Battelle Rencontres. Benjamin1967. Zbl0169.43202MR239299
  8. [8] J. Dimock.Algebras of Local Observables on a Manifold. Commun. Math. Phys., 77: 219-228, 1980. Zbl0455.58030MR594301
  9. [9] J. Dimock, B.S. Kay.Classical and Quantum Scattering Theory for linear Scalar Fields on Schwarzschild Metric II. J. Math. Phys., 27: 2520-2525, 1986. Zbl0608.53065MR857397
  10. [10] J. Dimock, B.S. Kay.Classical and Quantum Scattering Theory for linear Scalar Fields on Schwarzschild Metric I. Ann. Phys., 175: 366-426, 1987. Zbl0628.53080MR887979
  11. [11] K. Fredenhagen, R. Haag.On the Derivation of Hawking Radiation Associated with the Formation of a Black Hole. Comm. Math. Phys., 127: 273-284, 1990. Zbl0692.53040MR1037104
  12. [12] R. Haag.Local Quantum Physics. Springer-Verlag, 1992. Zbl0777.46037MR1182152
  13. [13] S. Hawking.Particle Creation by Black Holes. Comm. Math. Phys., 43: 199-220, 1975. MR381625
  14. [14] J-P. Nicolas.Non Linear Klein-Gordon Equation on Schwarzschild-like Metrics. J. Math. Pures Appl., 74: 35-58, 1995. Zbl0853.35123MR1313614
  15. [15] J-P. Nicolas.Scattering of linear Dirac fields by a spherically symetric Black-Hole. Ann. Inst. Henri Poincaré - Physique théorique, 62 (2): 145-179, 1995. Zbl0826.53072MR1317184
  16. [16] V. Petkov.Scattering Theory for Hyperbolic Operators. North Holland, 1989. Zbl0687.35067MR1028780
  17. [17] W.G. Unruh.Notes on black-hole evaporation. Phys. Rev. D, 14 (4): 870-892, 1976. 
  18. [18] R. Wald.On particle Creation by Black Holes. Comm. Math. Pys., 45: 9-34, 1975. MR391814

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.