Diffusion classique et quantique par un trou noir en formation
Séminaire Équations aux dérivées partielles (Polytechnique) (1995-1996)
- page 1-18
Access Full Article
topHow to cite
topBachelot, A.. "Diffusion classique et quantique par un trou noir en formation." Séminaire Équations aux dérivées partielles (Polytechnique) (1995-1996): 1-18. <http://eudml.org/doc/112126>.
@article{Bachelot1995-1996,
author = {Bachelot, A.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {wave operator; Klein-Gordon field; Doppler effect},
language = {fre},
pages = {1-18},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Diffusion classique et quantique par un trou noir en formation},
url = {http://eudml.org/doc/112126},
year = {1995-1996},
}
TY - JOUR
AU - Bachelot, A.
TI - Diffusion classique et quantique par un trou noir en formation
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1995-1996
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 18
LA - fre
KW - wave operator; Klein-Gordon field; Doppler effect
UR - http://eudml.org/doc/112126
ER -
References
top- [1] A. Bachelot.Scattering of Scalar Fields by Spherical Gravitational Collapse. J. Math. Pures Appl. à paraître Zbl0872.53066
- [2] A. Bachelot.Gravitationnal Scattering of Electromagnetic Field by Schwarzchild Black Hole. Ann. Inst. Henri Poincaré - Physique théorique, 54 (3): 261-320, 1991. Zbl0743.53037MR1122656
- [3] A. Bachelot.La diffraction en métrique de Schwarzschild: complétude asymptotique et résonances. Séminaire X-E.D.P., exposé VIII, Ecole Polytechnique, 1993. Zbl0884.35157MR1240549
- [4] A. Bachelot.Asymptotic Completeness for the Klein-Gordon Equation on the Schwarzschild Metric. Ann. Inst. Henri Poincaré - Physique théorique, 61 (4): 411-441, 1994. Zbl0809.35141MR1311537
- [5] A. Bachelot, A. Motet-Bachelot.Les résonances d'un trou noir de Schwarzschild. Ann. Inst. Henri Poincaré - Physique théorique, 59 (1): 3-68, 1993. Zbl0793.53094MR1244181
- [6] N.D. Birrel, P.C.W. Davies.Quantum fields in curved space. Cambridge University Press, 1982. Zbl0476.53017MR652252
- [7] Y. Choquet-Bruhat.Hyperbolic partial differential equations on a manifold. In Wheeler De Witt, editor, Battelle Rencontres. Benjamin1967. Zbl0169.43202MR239299
- [8] J. Dimock.Algebras of Local Observables on a Manifold. Commun. Math. Phys., 77: 219-228, 1980. Zbl0455.58030MR594301
- [9] J. Dimock, B.S. Kay.Classical and Quantum Scattering Theory for linear Scalar Fields on Schwarzschild Metric II. J. Math. Phys., 27: 2520-2525, 1986. Zbl0608.53065MR857397
- [10] J. Dimock, B.S. Kay.Classical and Quantum Scattering Theory for linear Scalar Fields on Schwarzschild Metric I. Ann. Phys., 175: 366-426, 1987. Zbl0628.53080MR887979
- [11] K. Fredenhagen, R. Haag.On the Derivation of Hawking Radiation Associated with the Formation of a Black Hole. Comm. Math. Phys., 127: 273-284, 1990. Zbl0692.53040MR1037104
- [12] R. Haag.Local Quantum Physics. Springer-Verlag, 1992. Zbl0777.46037MR1182152
- [13] S. Hawking.Particle Creation by Black Holes. Comm. Math. Phys., 43: 199-220, 1975. MR381625
- [14] J-P. Nicolas.Non Linear Klein-Gordon Equation on Schwarzschild-like Metrics. J. Math. Pures Appl., 74: 35-58, 1995. Zbl0853.35123MR1313614
- [15] J-P. Nicolas.Scattering of linear Dirac fields by a spherically symetric Black-Hole. Ann. Inst. Henri Poincaré - Physique théorique, 62 (2): 145-179, 1995. Zbl0826.53072MR1317184
- [16] V. Petkov.Scattering Theory for Hyperbolic Operators. North Holland, 1989. Zbl0687.35067MR1028780
- [17] W.G. Unruh.Notes on black-hole evaporation. Phys. Rev. D, 14 (4): 870-892, 1976.
- [18] R. Wald.On particle Creation by Black Holes. Comm. Math. Pys., 45: 9-34, 1975. MR391814
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.