Les résonances d'un trou noir de Schwarzschild

Alain Bachelot; Agnès Motet-Bachelot

Annales de l'I.H.P. Physique théorique (1993)

  • Volume: 59, Issue: 1, page 3-68
  • ISSN: 0246-0211

How to cite

top

Bachelot, Alain, and Motet-Bachelot, Agnès. "Les résonances d'un trou noir de Schwarzschild." Annales de l'I.H.P. Physique théorique 59.1 (1993): 3-68. <http://eudml.org/doc/76614>.

@article{Bachelot1993,
author = {Bachelot, Alain, Motet-Bachelot, Agnès},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {scattering frequencies; gravitational waves; Regge-Wheeler equation},
language = {fre},
number = {1},
pages = {3-68},
publisher = {Gauthier-Villars},
title = {Les résonances d'un trou noir de Schwarzschild},
url = {http://eudml.org/doc/76614},
volume = {59},
year = {1993},
}

TY - JOUR
AU - Bachelot, Alain
AU - Motet-Bachelot, Agnès
TI - Les résonances d'un trou noir de Schwarzschild
JO - Annales de l'I.H.P. Physique théorique
PY - 1993
PB - Gauthier-Villars
VL - 59
IS - 1
SP - 3
EP - 68
LA - fre
KW - scattering frequencies; gravitational waves; Regge-Wheeler equation
UR - http://eudml.org/doc/76614
ER -

References

top
  1. [1] V. De Alfaro et T. Regge, Potential Scattering, North Holland, Amsterdam, 1965. Zbl0141.23202MR191316
  2. [2] A. Bachelot, Gravitational Scattering of electromagnetic field by Schwarzschild Black–Hole, Ann. Inst. H. Poincaré, Phys. Théor., vol. 54, n° 3, 1991, p. 261-320. Zbl0743.53037MR1122656
  3. [3] R.P. Boas, Entire Functions, Academic Press, New York, 1954. Zbl0058.30201MR68627
  4. [4] N.G. De Bruijn, Asymptotic Methods in Analysis, Dover, New York, 1981. Zbl0556.41021MR671583
  5. [5] S. Chandrasekar, The mathematical theory of black-holes, Oxford University Press, New York, 1983. Zbl0511.53076MR700826
  6. [6] S. Chandrasekar, On algebraically special perturbations of black holes, Proc. R. Soc. Lond. A, vol. 392, 1984, p. 1-13. MR738924
  7. [7] S. Chandrasekar, S. Detweiler, The quasi-normal modes of the Schwarzschild blackhole, Proc. R. Soc. Lond. A, vol. 344, 1975, p. 441-452. 
  8. [8] T. Damour, Black-Hole eddy currents, Phys. Rev. D., vol. 18, 10, 1978, p. 3598-3604. 
  9. [9] T. Damour, Thèse de Doctorat d'État, Université Pierre-et-Marie-Curie, Paris, 1979. 
  10. [10] T. Damour, in Proceedings of the Second Marcel Grossman Meeting on General Relativity, Ruffini Edt, North-Holland, Amsterdam, 1982. MR678971
  11. [11] P. Deift et E. Trubowitz, Inverse Scattering on the Line, Comm. Pure Appl. Math., vol. 32, 1979, p. 121-251. Zbl0388.34005MR512420
  12. [12] J. Dimock, Scattering for the wave equation on the Schwarzschild metric, Gen. Rel. Grav., vol. 17, 4, 1985, p. 353-369. Zbl0618.35088MR788801
  13. [13] B. Engquist et A. Majda, Radiation boundary conditions for acoustic and elastic wave calculations, Comm. Pure Appl. Math., vol. 32, 1979, p. 313-357. Zbl0387.76070MR517938
  14. [14] V. Ferrari, B. Mashhoon, New approach to the quasinormal modes of a black-hole, Phys. Rev. D, vol. 30, 2, 1984, p. 295-304. MR750250
  15. [15] J.W. Guinn, Y. Kojima et B.F. Schutz, High-overtone normal modes of Schwarzschild black-holes, Class. Quantum Grav., vol. 7, 1990, p. 47-53. MR1042874
  16. [16] J.B. Hartle et D.C. Wilkins, Analytic Properties of the Teukolsky Equation, Comm. Math. Phys., vol. 38, 1974, p. 47-63. MR351359
  17. [17] S. Iyer, Black-hole normal modes: a WKB approach II; Schwarzschild black holes, Phys. Rev. D, vol. 35, 12, 1987, p. 3632-3636. 
  18. [18] T. Kato, Perturbation Theory for Linear Operators, Springer Verlag, New York, 1966. Zbl0148.12601MR203473
  19. [19] K.D. Kokkotas, Normal modes of the Kerr black-hole, Class. Quantum Grav., vol. 8, 1991, p. 2217-2224. Zbl0729.83501MR1141038
  20. [20] P. Lax et R. Phillips, Scattering Theory, Academic Press, New York, nouvelle édition 1989. Zbl0697.35004MR1037774
  21. [21] E. Leaver, Spectral decomposition of the perturbation response of the Schwarzschild geometry, Phys. Rev. D, vol. 34, 2, 1986, p. 384-408. Zbl1222.83053MR848080
  22. [22] E. Leaver, An analytic representation for the quasi-normal modes of Kerr black-holes, Proc. R. Soc. Lond. A, vol. 402, 1985, p. 285-298. MR828221
  23. [23] D.A. Macdonald, R.H. Price, K.S. Thorne, Black-Holes: The Membrane Paradigm, Yale University Press, New Haven, London, 1986. MR912528
  24. [24] G. Majda, W. Strauss et M. Wei, Numerical Computation of the Scattering Frequencies for Acoustic Wave Equations, Comput. Phys., vol. 75, 2, 1988, p. 345-358. Zbl0643.65080
  25. [25] B. Majumda et N. Panchapakesan, Schwarzschild black-hole normal modes using the Hill determinant, Phys. Rev. D., vol. 40, 1989, p. 2568-2571. MR1019504
  26. [26] E.K. Miller, R. Mittra, A.J. Poggio, M.L. Van Blaricum, Evaluation of a Processing Technique for Transient Data, IEEE Trans. Antennas Propagat., vol. 36, 1, 1978, p. 165-173. 
  27. [27] R. Mittra, M.L. Van Blaricum, A Technique for Extracting the Poles and Residues of a System Directly from Its Transient Response, IEEE Trans. Antennas Propagat., vol. 23, 6, 1975, p. 777-781. 
  28. [28] R.G. Newton, Scattering Theory of Waves and Particles, McGraw-Hill, New York, 1966. MR221823
  29. [29] H.P. Nollert, Doktorarbeit, Universitât Tübingen, 1991. 
  30. [30] H.P. Nollert, B.G. Schmidt, Quasi-Normal Modes of Schwarzschild Black-Holes–Defined and Calculated via Laplace Transformtion, preprint, 1992. Zbl1232.83054MR1157096
  31. [31] R. Phillips, Scattering Theory for the Wave Equation with a Short Range Perturbation II, Indiana Univ. Math. J., vol. 33, 6, 1984, p. 831-846. Zbl0526.35066MR763944
  32. [32] R.H. Price, Y. Sun, Excitation of quasinormal ringing of a Schwarzschild black-hole, Phys. Rev. D, vol. 38, 4, 1988, p. 1040-1052. MR962227
  33. [33] R. Prony, Essai expérimental et analytique sur les lois de la dilatabilité de fluides élastiques et sur celles de la force expansive de la vapeur de l'alcool à différentes températures, J. de l'École Polytechnique, vol. 1, cahier 2, 1795, p. 24-76. 
  34. [34] M. Reed et B. Simon, Methods ofmodern mathematical physics, vol. III, 1979, Academic Press. Zbl0405.47007
  35. [35] M. Reed et B. Simon, Methods of modern mathematical physics, vol. IV, 1978, Academic Press. Zbl0401.47001
  36. [36] T. Regge, Analytic Properties of the Scattering Matrix, Il Novo Cimento, vol. 8, 5, 1958, p. 671-679. Zbl0080.41903MR95702
  37. [37] M. Schechter, Operator Methods in Quantum Mechanics, North Holland, New York, Oxford, 1981. Zbl0456.47012MR597895
  38. [38] B. Schmidt, Communication privée, I.H.E.S., mars 1990. 
  39. [39] M. Wei, Numerical Computation of Scattering Frequencies, Ph. D. Thesis, Dept. of Applied Math., Brown Univ., Providence, RI, 1986. 
  40. [40] M. Zworski, Distribution of Poles for Scattering on the Real Line, J. Funct. Anal., vol. 73, 1987, p. 277-296. Zbl0662.34033MR899652

Citations in EuDML Documents

top
  1. Alain Bachelot, Asymptotic completeness for the Klein-Gordon equation on the Schwarzschild metric
  2. Christophe Hazard, François Loret, The Singularity Expansion Method applied to the transient motions of a floating elastic plate
  3. A. Bachelot, La diffraction en métrique de Schwarzschild : complétude asymptotique et résonances
  4. J.-P. Nicolas, Scattering of linear Dirac fields by a spherically symmetric Black-Hole
  5. A. Bachelot, Diffusion classique et quantique par un trou noir en formation
  6. Alain Bachelot, L’effet Hawking
  7. Alain Bachelot, The Hawking effect
  8. Alain Bachelot, Wave Equation and Causality Violation
  9. Dietrich Häfner, Jean-Philippe Nicolas, Théorie de la diffusion pour l’équation de Dirac sans masse dans la métrique de Kerr

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.