Cônes symplectiques et opérateurs de Toeplitz

Louis Boutet de Monvel

Séminaire de théorie spectrale et géométrie (1994-1995)

  • Volume: 13, page 157-166
  • ISSN: 1624-5458

How to cite

top

Boutet de Monvel, Louis. "Cônes symplectiques et opérateurs de Toeplitz." Séminaire de théorie spectrale et géométrie 13 (1994-1995): 157-166. <http://eudml.org/doc/114374>.

@article{BoutetdeMonvel1994-1995,
author = {Boutet de Monvel, Louis},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {geometric quantization; Fourier integral operators; Toeplitz operators; symplectic cone; complex Lagrangians},
language = {fre},
pages = {157-166},
publisher = {Institut Fourier},
title = {Cônes symplectiques et opérateurs de Toeplitz},
url = {http://eudml.org/doc/114374},
volume = {13},
year = {1994-1995},
}

TY - JOUR
AU - Boutet de Monvel, Louis
TI - Cônes symplectiques et opérateurs de Toeplitz
JO - Séminaire de théorie spectrale et géométrie
PY - 1994-1995
PB - Institut Fourier
VL - 13
SP - 157
EP - 166
LA - fre
KW - geometric quantization; Fourier integral operators; Toeplitz operators; symplectic cone; complex Lagrangians
UR - http://eudml.org/doc/114374
ER -

References

top
  1. [1] BOUTET DE MONVEL L.Hypoelliptic operators with double characteristics and related pseudodifferential operators. Comm. Pure Appl. Math. 27 ( 1974), 585-639. Zbl0294.35020MR370271
  2. [2] BOUTET DE MONVEL L.On the index of Toeplitz operators of several complex variables. Inventiones Math. 50 ( 1979) 249-272. cf. aussi Séminaire EDP 1979, Ecole Polytechnique. Zbl0398.47018MR520928
  3. [3] BOUTET DE MONVEL L.Variétés de contact quantifiées. Séminaire Goulaouic-Schwartz, 1979-80, exposé 3. Zbl0442.53041
  4. [4] BOUTET DE MONVEL L.Convergence dans le domaine complexe des séries de fonctions propres. C.R.A.S. 287 ( 1979), 855-856. Zbl0392.35043MR551763
  5. [5] BOUTET DE MONVEL L.Opérateurs à coefficients polynomiaux, espace de Bargman, et opérateurs de Toeplitz. Séminaire Goulaouic-Meyer-Schwartz, 1980-81 exposé 2 bis. Zbl0479.35084
  6. [6] BOUTET DE MONVEL L.Opérateurs pseudodifférentiels à bicaractéristiques périodiques. Séminaire Bony-Meyer-Sjöstrand, Ecole Polytechnique, 1984, exposé 20. 
  7. [7] BOUTET DE MONVEL L.Toeplitz Operators, an asymptotic quantization of symplectic cones. Research Center of Bielefeld-Bochum-Stochastics, University of Bielefeld (FDR) 215/86 ( 1986). Zbl0735.47014
  8. [8] BOUTET DE MONVEL L., GUILLEMIN V.The Spectral Theory of Toeplitz Operators Ann. of Math Studies 99, Princeton University Press, 1981. Zbl0469.47021MR620794
  9. [9] BOUTET DE MONVEL L., SJÖSTRAND J.Sur la singularité des noyaux de Bergman et de Szegö. Astérisque 34-35 ( 1976) 123-164. Zbl0344.32010MR590106
  10. [10] DUISTERMAAT J.J.Oscillatory integrals, Lagrange immersions and unfolding of singularities. Comm Pure Appl. Math. 27 ( 1974), 207-281. Zbl0285.35010MR405513
  11. [11] DUISTERMAAT J.J., GUILLEMIN V.The spectrum of positive elliptic operators and periodic geodesics. Proc. A.M.S. Summer lnst. Diff. Geom. Stanford ( 1973). Zbl0322.35071
  12. [12] DUISTERMAAT J.J., HÖRMANDER L.Fourier integral operators II. Acta Math. 128 ( 1972), 183-269. Zbl0232.47055MR388464
  13. [13] DUISTERMAAT J.J., SJÖSTRAND J.A global construction for pseudo-differential operators xith non involutive characteristics. Invent. Math. 20 ( 1973), 209-225. Zbl0282.35071MR344942
  14. [14] FEDOSOV B.V.Formal quantization. Some topics of Modem Mathematics and their Applications to Problems of Mathematical Physics (in russian), Moscow ( 1985), 129-136. MR933154
  15. [15] FEDOSOV B.V.Index theorems in the algebra of quantum observables. Sov. Phys. Dokl 34, ( 1989), 318-321. MR998039
  16. [16] FEDOSOV B.V.Asimple geometrical construction of deformation quantization. J.Diff Geom. Zbl0812.53034
  17. [17] FEDOSOV B.V.Proof of the index theorem for deformation quantization. Advances in Partial Differential Equations, Akademie Verlag, Berlin ( 1994). Zbl0867.58062MR1389013
  18. [18] FEDOSOV B.V.Reduction and eigenstates in deformation quantization. Advances in Partial Differential Equations, Akademie Verlag, Berlin. Zbl0809.58012MR1287670
  19. [19] FEFFERMAN C.The Bergman kernel and biholomorphic equivalence of pseudo-convex domains. Inventiones Math. 26 ( 1974), 1-65. Zbl0289.32012MR350069
  20. [20] GUILLEMIN V., STERNBERG S.Geometrical asymptotics. Amer. Math. Soc. Surveys 14, Providence RI, 1977. Zbl0364.53011MR516965
  21. [21] HÖRMANDER L.Fourier integral operators I. Acta Math. 127 (19721), 79-183. Melin A. Zbl0212.46601MR388463
  22. [22] J. SJÖSTRAND. Fourier Integral operators with complex valued phase functions. Lecture Notes 459 ( 1974) 120-223. Zbl0306.42007MR431289
  23. [23] MELIN A., SJÖSTRAND J.Fourier integral operators with complex phase functions and parametrix for an interior boundary value problem. Comm. PD.E. 1:4 ( 1976) 313-400. Zbl0364.35049MR455054
  24. [24] WEINSTEIN A., ZELDITCH S.Singularities of solutions of Schrödinger equations on Rn. Bull. Amer. Math. Soc., 6, nb. 3 ( 1982), 449-452. Zbl0482.35085MR648532
  25. [25] WEINSTEIN A.Fourier integral operators, quantization, and the spectrum of a Riemanian manifold. Géométrie Symplectique et Physique Mathématique, Coll. International du C.N.R.S. 237 ( 1976), 289-298. Zbl0327.58013MR650990
  26. [26] WEINSTEIN A.Noncommutative geometry and geometry and geometric quantization. in Symplectic Geometry and Mathematical Physics, Actes du Congrès en l'honneur de J. M. Souriau, P. Donato et al eds., Birkhäuser ( 1991), 446-461. Zbl0756.58022MR1156554
  27. [27] WEINSTEIN A/ Deformation quantization. Séminaire Bourbaki 789, Juin 7994. Zbl0854.58026

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.