Cônes symplectiques et opérateurs de Toeplitz
Séminaire de théorie spectrale et géométrie (1994-1995)
- Volume: 13, page 157-166
- ISSN: 1624-5458
Access Full Article
topHow to cite
topBoutet de Monvel, Louis. "Cônes symplectiques et opérateurs de Toeplitz." Séminaire de théorie spectrale et géométrie 13 (1994-1995): 157-166. <http://eudml.org/doc/114374>.
@article{BoutetdeMonvel1994-1995,
author = {Boutet de Monvel, Louis},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {geometric quantization; Fourier integral operators; Toeplitz operators; symplectic cone; complex Lagrangians},
language = {fre},
pages = {157-166},
publisher = {Institut Fourier},
title = {Cônes symplectiques et opérateurs de Toeplitz},
url = {http://eudml.org/doc/114374},
volume = {13},
year = {1994-1995},
}
TY - JOUR
AU - Boutet de Monvel, Louis
TI - Cônes symplectiques et opérateurs de Toeplitz
JO - Séminaire de théorie spectrale et géométrie
PY - 1994-1995
PB - Institut Fourier
VL - 13
SP - 157
EP - 166
LA - fre
KW - geometric quantization; Fourier integral operators; Toeplitz operators; symplectic cone; complex Lagrangians
UR - http://eudml.org/doc/114374
ER -
References
top- [1] BOUTET DE MONVEL L.Hypoelliptic operators with double characteristics and related pseudodifferential operators. Comm. Pure Appl. Math. 27 ( 1974), 585-639. Zbl0294.35020MR370271
- [2] BOUTET DE MONVEL L.On the index of Toeplitz operators of several complex variables. Inventiones Math. 50 ( 1979) 249-272. cf. aussi Séminaire EDP 1979, Ecole Polytechnique. Zbl0398.47018MR520928
- [3] BOUTET DE MONVEL L.Variétés de contact quantifiées. Séminaire Goulaouic-Schwartz, 1979-80, exposé 3. Zbl0442.53041
- [4] BOUTET DE MONVEL L.Convergence dans le domaine complexe des séries de fonctions propres. C.R.A.S. 287 ( 1979), 855-856. Zbl0392.35043MR551763
- [5] BOUTET DE MONVEL L.Opérateurs à coefficients polynomiaux, espace de Bargman, et opérateurs de Toeplitz. Séminaire Goulaouic-Meyer-Schwartz, 1980-81 exposé 2 bis. Zbl0479.35084
- [6] BOUTET DE MONVEL L.Opérateurs pseudodifférentiels à bicaractéristiques périodiques. Séminaire Bony-Meyer-Sjöstrand, Ecole Polytechnique, 1984, exposé 20.
- [7] BOUTET DE MONVEL L.Toeplitz Operators, an asymptotic quantization of symplectic cones. Research Center of Bielefeld-Bochum-Stochastics, University of Bielefeld (FDR) 215/86 ( 1986). Zbl0735.47014
- [8] BOUTET DE MONVEL L., GUILLEMIN V.The Spectral Theory of Toeplitz Operators Ann. of Math Studies 99, Princeton University Press, 1981. Zbl0469.47021MR620794
- [9] BOUTET DE MONVEL L., SJÖSTRAND J.Sur la singularité des noyaux de Bergman et de Szegö. Astérisque 34-35 ( 1976) 123-164. Zbl0344.32010MR590106
- [10] DUISTERMAAT J.J.Oscillatory integrals, Lagrange immersions and unfolding of singularities. Comm Pure Appl. Math. 27 ( 1974), 207-281. Zbl0285.35010MR405513
- [11] DUISTERMAAT J.J., GUILLEMIN V.The spectrum of positive elliptic operators and periodic geodesics. Proc. A.M.S. Summer lnst. Diff. Geom. Stanford ( 1973). Zbl0322.35071
- [12] DUISTERMAAT J.J., HÖRMANDER L.Fourier integral operators II. Acta Math. 128 ( 1972), 183-269. Zbl0232.47055MR388464
- [13] DUISTERMAAT J.J., SJÖSTRAND J.A global construction for pseudo-differential operators xith non involutive characteristics. Invent. Math. 20 ( 1973), 209-225. Zbl0282.35071MR344942
- [14] FEDOSOV B.V.Formal quantization. Some topics of Modem Mathematics and their Applications to Problems of Mathematical Physics (in russian), Moscow ( 1985), 129-136. MR933154
- [15] FEDOSOV B.V.Index theorems in the algebra of quantum observables. Sov. Phys. Dokl 34, ( 1989), 318-321. MR998039
- [16] FEDOSOV B.V.Asimple geometrical construction of deformation quantization. J.Diff Geom. Zbl0812.53034
- [17] FEDOSOV B.V.Proof of the index theorem for deformation quantization. Advances in Partial Differential Equations, Akademie Verlag, Berlin ( 1994). Zbl0867.58062MR1389013
- [18] FEDOSOV B.V.Reduction and eigenstates in deformation quantization. Advances in Partial Differential Equations, Akademie Verlag, Berlin. Zbl0809.58012MR1287670
- [19] FEFFERMAN C.The Bergman kernel and biholomorphic equivalence of pseudo-convex domains. Inventiones Math. 26 ( 1974), 1-65. Zbl0289.32012MR350069
- [20] GUILLEMIN V., STERNBERG S.Geometrical asymptotics. Amer. Math. Soc. Surveys 14, Providence RI, 1977. Zbl0364.53011MR516965
- [21] HÖRMANDER L.Fourier integral operators I. Acta Math. 127 (19721), 79-183. Melin A. Zbl0212.46601MR388463
- [22] J. SJÖSTRAND. Fourier Integral operators with complex valued phase functions. Lecture Notes 459 ( 1974) 120-223. Zbl0306.42007MR431289
- [23] MELIN A., SJÖSTRAND J.Fourier integral operators with complex phase functions and parametrix for an interior boundary value problem. Comm. PD.E. 1:4 ( 1976) 313-400. Zbl0364.35049MR455054
- [24] WEINSTEIN A., ZELDITCH S.Singularities of solutions of Schrödinger equations on Rn. Bull. Amer. Math. Soc., 6, nb. 3 ( 1982), 449-452. Zbl0482.35085MR648532
- [25] WEINSTEIN A.Fourier integral operators, quantization, and the spectrum of a Riemanian manifold. Géométrie Symplectique et Physique Mathématique, Coll. International du C.N.R.S. 237 ( 1976), 289-298. Zbl0327.58013MR650990
- [26] WEINSTEIN A.Noncommutative geometry and geometry and geometric quantization. in Symplectic Geometry and Mathematical Physics, Actes du Congrès en l'honneur de J. M. Souriau, P. Donato et al eds., Birkhäuser ( 1991), 446-461. Zbl0756.58022MR1156554
- [27] WEINSTEIN A/ Deformation quantization. Séminaire Bourbaki 789, Juin 7994. Zbl0854.58026
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.