Inégalités de Sobolev et L 2 -cohomologie

Gilles Carron

Séminaire de théorie spectrale et géométrie (1994-1995)

  • Volume: 13, page 171-176
  • ISSN: 1624-5458

How to cite

top

Carron, Gilles. "Inégalités de Sobolev et $L^2$-cohomologie." Séminaire de théorie spectrale et géométrie 13 (1994-1995): 171-176. <http://eudml.org/doc/114377>.

@article{Carron1994-1995,
author = {Carron, Gilles},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {noncompact Riemannian manifold},
language = {fre},
pages = {171-176},
publisher = {Institut Fourier},
title = {Inégalités de Sobolev et $L^2$-cohomologie},
url = {http://eudml.org/doc/114377},
volume = {13},
year = {1994-1995},
}

TY - JOUR
AU - Carron, Gilles
TI - Inégalités de Sobolev et $L^2$-cohomologie
JO - Séminaire de théorie spectrale et géométrie
PY - 1994-1995
PB - Institut Fourier
VL - 13
SP - 171
EP - 176
LA - fre
KW - noncompact Riemannian manifold
UR - http://eudml.org/doc/114377
ER -

References

top
  1. [At] M.F. ATIYAH. _ Elliptic operators, discrete groups and von Neumann algebras, Soc. Math. France, Astérisque 32, 33 ( 1976), 43-72. Zbl0323.58015MR420729
  2. [Br] J. BRÜNING. _ L2-index theorems on a certain complete manifold, J. Differential Geometry 32 ( 1990),491-532. Zbl0722.58043MR1072916
  3. [C] G. CARRON. _ L2-cohomologie et inégalités de Sobolev, Prépublication de l'Institut Fourier n° 306, Grenoble, 1995. 
  4. [C-G1] J. CHEEGER, M. GROMOV. _ On the characteristics numbers of complete manifolds of bounded curvature and finite volume, Rauch memorial volume, Differential Geometry and Complex analysis, I. Chavel and H.M. Farkas.Springer, Berlin, p. 115,154, 1985. Zbl0592.53036MR780040
  5. [C-G2] J. CHEEGER, M. GROMOV. _ Bounds of the Von Neumann dimension of L2-cohomology and the Gauss-Bonnet theorem for open manifolds, J. Differential Geometry 21 ( 1985), 1-34. Zbl0614.53034MR806699
  6. [Do] J. DODZIUK. _ De Rham-Hodge theory for L2 cohomology of infinite covering, Topology 16 ( 1977), 157-165. Zbl0348.58001MR445560
  7. [D-X] H. DONNELY, F. XAVIER. _ On the differential form spectrum of negatively curved Riemannian manifold, Amer. J. Math. 106 ( 1984), 169-185. Zbl0547.58034MR729759
  8. [E-R] K.D. ELWORTHY, S. ROSENBERG. _ Manifofds with wells of negative curvature, Invent. Math. 103 ( 1991), 471-495. Zbl0722.53033MR1091615
  9. [E-F] J.S. ESCOBAR, A. FREIRE. _ The differential form spectrum of manifold of positive curvature, Duke J. Math. 69 ( 1993). 1-42. Zbl0791.53046MR1201689
  10. [G-W] R. GREENE, H.H. WU. _ Harmonics forms on noncompact Riemannian and Kähler manifolds, Michigan Math. J. 28 ( 1981), 63-81. Zbl0477.53058MR600415
  11. [M] W. MÜLLER. _ Manifold with cusps of ranh one, Spectral theory and L2 index theorem, L.N. in Math na 1244, Springer-Verlag, 1987. Zbl0632.58001MR891654
  12. [R1] J. ROE. _ An index theorem on open manifolds I, II, J. Differential Geometry 27 ( 1988), 87-113, 115-136. Zbl0657.58041MR918459
  13. [R2] J. ROE. _ Coarse cohomology and index theory on complete Manifolds, Memoirs of the A.M.S.vol 104, na 497, 1993. Zbl0780.58043MR1147350

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.