Sur le spectre semi-classique d’un système intégrable de dimension 1 autour d’une singularité hyperbolique
- [1] Université Joseph Fourier – Grenoble 1, Institut Fourier – UMR CNRS 5582, 100 rue des Maths, BP 74, 38402 Saint Martin d’Hères (France)
Annales de la faculté des sciences de Toulouse Mathématiques (2010)
- Volume: 19, Issue: 1, page 191-229
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topReferences
top- Abramowitz (M.), Stegun (I.A).— Handbook of Mathematical functions with formulas, graphs and mathematical tables. New York : Dover, p. 255-258 and p. 260-263, (1972). Zbl0543.33001MR208797
- Audin (M.).— Les systèmes hamiltoniens et leurs intégrabilité, Cours spécialisés 8, SMF, (2001). Zbl1144.37001MR1972063
- Brummelhuis (R.), Paul (T.), Uribe (A.).— Spectral estimates around a critical level, Duke Math. J, 78(3) p. 477-530, (1995). Zbl0849.58067MR1334204
- Carleman (T.).— Sur la théorie mathématique de l’équation de Schrödinger, Ark. Mat. Astr. Fys. 24B 11 p. 1-7, (1934). Zbl0009.35702
- Carry (J.), Rusu (P.).— Separatrix eingenfunction, Phys. Review A 45(12) p. 8501-8512, (1992).
- Colin de Verdiere (Y.), Vey (J.).— Le lemme de Morse isochore, Topology, 19 p. 283-293, (1979). Zbl0441.58003MR551010
- Colin de Verdiere (Y.).— Spectre conjoint d’opérateurs pseudo-différentiels qui commute II, Math. Z., vol 71, p. 51-73, (1980). Zbl0478.35073
- Colin de Verdiere (Y.), Parisse (B.).— Equilibre instable en régime semi-classique I : Concentration microlocale, Comm PDE, 19 p. 1535-1564, (1994). Zbl0819.35116MR1294470
- Colin de Verdiere (Y.), Parisse (B.).— Equilibre instable en régime semi-classique II : Conditions de Bohr-Sommerferld, Ann. IHP, 61 p. 347-367, (1999). Zbl0845.35076MR1311072
- Colin de Verdiere (Y.), Lombardi (M.), Pollet (J.).— The microlocal Landau-Zener formula, Ann. IHP, 71 p. 95-127, (1999). Zbl0986.81027MR1704655
- Colin de Verdiere (Y.), Parisse (B.).— Singular Bohr-Sommerfeld rules, Commun. Math. Phys, 205 p. 459-500, (2000). Zbl1157.81310MR1712567
- Colin de Verdiere (Y.).— Bohr-Sommerfeld rules to all orders, Henri Poincaré Acta, 6, p. 925-936, (2005). Zbl1080.81029MR2219863
- Colin de Verdiere (Y.).— Méthodes semi-classique et théorie spectrale, Cours de DEA, (2006).
- Courant (R.), Hilbert (D.).— Methods of mathematical physics, Intersciences Publishers, New York, (1953). Zbl0051.28802MR65391
- Dimassi (M.), Sjöstrand (J.).— Spectral asymptotics in the semi-classical limit, London Math Society Lectures Note Series 268, (1999). Zbl0926.35002MR1735654
- Evans (L.), Zworski (M.).— Lectures on semiclassical analysis. http ://mathh-berkeley.edu/~zworski/semiclassical.pdf.
- Friedrichs (K.).— Spektraltheorie halbbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren, Math. Ann. 109 : p. 465-487, p. 685-713, (1934). Zbl0008.39203
- Fujiie (S.), Ramond (T.).— Breit-Wigner formula at barrier tops, J. Math. Phys, 44(5) : 1971-1983, 2003. Zbl1062.81057MR1972758
- Kondrat’ev (V. A.), Shubin (M.A.).— Discreteness of the spectrum for Schrödinger operators on manifolds of bounded, geometry , Proceedings of the conference “Functional Analysis, Partial Differential Equations and Applications” dedicated to the V. G. Maz’ya 60th birthday, Rostock, (1998). Zbl0985.58012
- Kondrat’ev (V. A.), Shubin (M.A.).— Conditions for the discreteness of the spectrum for Schrödinger operators on manifolds, Funct. Anal. and Appl. 33, (1999). Zbl0953.58024MR1724275
- Gel’fand (I.), Shilov (G.).— Generalized Functions, Vol. 1, Academic Press, 1964. Zbl0115.33101MR166596
- Gerard (C.), Grigis (A.).— Precise estimates of tunneling and eigenvalues near a potential barrier, Journal of Differential Equation 72 p. 149-177, (1988). Zbl0668.34022MR929202
- Helffer (B.), Robert (D.).— Puit de potentiel généralisé et asymptotique semi-classique, Annales de l’IHP Physique Théorique 41(3) p. 291-331, (1984). Zbl0565.35082MR776281
- Helffer (B.), Sjöstrand (J.).— Multiple wells in the semi-classical limit I, Comm. in Partial Differential Equation 9(4) p. 337-408, (1984). Zbl0546.35053MR740094
- Helffer (B.), Sjöstrand (J.).— Semiclassical analysis of Harper’s equation, Bulletin, Société Mathématique de France, Mémoire, 39, (1990).
- Lablee (O.).— Spectre du Laplacien et de l’opérateur de Schrödinger sur une variété : de la géométrie spectrale à l’analyse semi-classique, Gazette des Mathématiciens, Société Mathématique de France :116, (2008). Zbl1185.35150
- Laudenbach (F.).— Calcul différentiel et intégral, Editions de l’école polytechnique, (2000).
- Moser (J.).— The Analytic Invariants of an Area-Preserving Mapping Near a Hyperbolic Fixed Point, Comm. on pure an d applied math, Vol. 9, p. 673-692, (1956). Zbl0072.40801MR86981
- Marz (C.).— Spectral Asymptotics for Hill’s Equation near the potential maximum, Asymptotics Analysis 5 p. 221-267, (1992). Zbl0786.34080MR1145112
- Martinez (A.).— An introduction to Semiclassical and Microlocal Analysis, Springer, (2001). Zbl0994.35003MR1872698
- Nadirashvili (N.).— Multiple eigenvalues of the Laplace operator, Math. USSR Sbornik, 61 p. 225-238, (1988). Zbl0672.35049MR905007
- Oleinik (I. M.).— On the essential self-adjointness of the Schrödinger operators on a complete Riemannian manifold, Math. Notes. 54 p. 934-939, (1993). Zbl0818.58047
- Ramond (T.).— Semiclassical study of quantum scattering on the line, Comm. Math. Phys., 177, p. 221-254, (1996). Zbl0848.34074MR1382227
- Robert (D.).— Autour de l’approximation semi-classique, volume 68 of Progress in Mathematics, Birkhäuser, (1987). Zbl0621.35001MR897108
- Sjöstrand (J.).— Microlocal analysis for the periodic magnetic Schrödinger equation and related questions, Microlocal analysis and applications (Montecatini Terme, 1989), Lect. Notes in Math., (1495), Springer, Berlin, (1991). Zbl0761.35090MR1178559
- Sjöstrand (J.).— Density of states oscillations for magnetic Schrödinger operators, Differential equations and mathematical physics (Birmingham, AL, 1990), 295-345, Math. Sci. Engrg., 186, Academic Press, Boston, MA, (1992). Zbl0778.35089MR1126702
- VuNgoc (S.).— Sur le spectre des systèmes complètement intégrables semi-classiques avec singularités, PhD Thesis Institut Fourier (1998).
- VuNgoc (S.).— Formes normales semi-classiques des systèmes complètement intégrables au voisinage d’un point critique de l’application moment, Asymptotic analysis, vol. 24 (3-4), p. 319-342, (2000). Zbl0990.58018MR1797775
- VuNgoc (S.).— Bohr-Sommerfeld conditions for integrable systems with critical manifolds of focus-focus type, Comm. Pure and Applied Math., vol 53, number 2, p. 143-217, (2000). Zbl1027.81012MR1721373
- VuNgoc (S.).— Systèmes intégrables semi-classiques : du local au global, Panoramas et synthèses 22, SMF, (2006). Zbl1118.37001