Almost sure Weyl asymptotics for non-self-adjoint elliptic operators on compact manifolds
William Bordeaux Montrieux[1]; Johannes Sjöstrand[2]
- [1] Fakultät für Mathematik,Universität Wien, Nordbergstrasse 15, 1090 Wien, Austria
- [2] IMB, Université de Bourgogne, 9, Av. A. Savary, BP 47870, FR 21078 Dijon cédex, France, and UMR 5584 CNRS
Annales de la faculté des sciences de Toulouse Mathématiques (2010)
- Volume: 19, Issue: 3-4, page 567-587
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topBordeaux Montrieux, William, and Sjöstrand, Johannes. "Almost sure Weyl asymptotics for non-self-adjoint elliptic operators on compact manifolds." Annales de la faculté des sciences de Toulouse Mathématiques 19.3-4 (2010): 567-587. <http://eudml.org/doc/115864>.
@article{BordeauxMontrieux2010,
abstract = {In this paper, we consider elliptic differential operators on compact manifolds with a random perturbation in the 0th order term and show under fairly weak additional assumptions that the large eigenvalues almost surely distribute according to the Weyl law, well-known in the self-adjoint case.},
affiliation = {Fakultät für Mathematik,Universität Wien, Nordbergstrasse 15, 1090 Wien, Austria; IMB, Université de Bourgogne, 9, Av. A. Savary, BP 47870, FR 21078 Dijon cédex, France, and UMR 5584 CNRS},
author = {Bordeaux Montrieux, William, Sjöstrand, Johannes},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {non selfadjoint elliptic operator; Weyl asymptotics; large eigenvalues},
language = {eng},
number = {3-4},
pages = {567-587},
publisher = {Université Paul Sabatier, Toulouse},
title = {Almost sure Weyl asymptotics for non-self-adjoint elliptic operators on compact manifolds},
url = {http://eudml.org/doc/115864},
volume = {19},
year = {2010},
}
TY - JOUR
AU - Bordeaux Montrieux, William
AU - Sjöstrand, Johannes
TI - Almost sure Weyl asymptotics for non-self-adjoint elliptic operators on compact manifolds
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2010
PB - Université Paul Sabatier, Toulouse
VL - 19
IS - 3-4
SP - 567
EP - 587
AB - In this paper, we consider elliptic differential operators on compact manifolds with a random perturbation in the 0th order term and show under fairly weak additional assumptions that the large eigenvalues almost surely distribute according to the Weyl law, well-known in the self-adjoint case.
LA - eng
KW - non selfadjoint elliptic operator; Weyl asymptotics; large eigenvalues
UR - http://eudml.org/doc/115864
ER -
References
top- Bordeaux Montrieux (W.).— Loi de Weyl presque sûre et résolvante pour des opérateurs différentiels non-autoadjoints, Thesis, CMLS, Ecole Polytechnique (2008). See also paper to appear in Annales Henri Poincaré. http://pastel.paristech.org/5367/ MR2605808
- Davies (E.B.).— Semi-classical states for non-self-adjoint Schrödinger operators, Comm. Math. Phys. 200(1), p. 35-41 (1999). Zbl0921.47060MR1671904
- Dimassi (M.), Sjöstrand (J.).— Spectral asymptotics in the semi-classical limit, London Math. Soc. Lecture Notes Ser., 268, Cambridge Univ. Press, (1999). Zbl0926.35002MR1735654
- Grigis (A.).— Estimations asymptotiques des intervalles d’instabilité pour l’équation de Hill, Ann. Sci. École Norm. Sup. (4) 20(4), p. 641-672 (1987). Zbl0644.34021MR932802
- Hager (M.).— Instabilité spectrale semiclassique d’opérateurs non-autoadjoints. II. Ann. Henri Poincaré, 7(6), p. 1035-1064 (2006). Zbl1115.81032MR2267057
- Hager (M.), Sjöstrand (J.).— Eigenvalue asymptotics for randomly perturbed non-selfadjoint operators, Math. Annalen, 342(1), p. 177-243 (2008). Zbl1151.35063MR2415321
- Seeley (R.).— A simple example of spectral pathology for differential operators, Comm. Partial Differential Equations 11(6), p. 595-598 (1986). Zbl0598.35013MR837277
- Sjöstrand (J.).— Eigenvalue distributions and Weyl laws for semi-classical non-selfadjoint operators in 2 dimensions, Proceedings of the Duistermaat conference 2007, Birkhäuser, Progress in Math., to appear.
- Sjöstrand (J.).— Eigenvalue distribution for non-self-adjoint operators with small multiplicative random perturbations, Ann. Fac. Sci. Toulouse, (6) 18(4), p. 739-795 (2009). Zbl1194.47058MR2590387
- Sjöstrand (J.).— Eigenvalue distribution for non-self-adjoint operators on compact manifolds with small multiplicative random perturbations, Ann. Fac. Sci. Toulouse (6) 19(2), p. 277-301 (2010). Zbl1206.35267MR2674764
- Trefethen (L.N.).— Pseudospectra of linear operators, SIAM Rev. 39(3), p. 383-406 (1997). Zbl0896.15006MR1469941
- Zworski (M.).— A remark on a paper of E. B. Davies: “Semi-classical states for non-self-adjoint Schrödinger operators”, Proc. Amer. Math. Soc. 129(10), p. 2955-2957 (2001). Zbl0981.35107MR1840099
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.