Eigenvalue distribution for non-self-adjoint operators on compact manifolds with small multiplicative random perturbations
- [1] IMB, Université de Bourgogne 9, Av. A. Savary, BP 47870 FR-21780 Dijon Cédex and UMR 5584, CNRS
Annales de la faculté des sciences de Toulouse Mathématiques (2010)
- Volume: 19, Issue: 2, page 277-301
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topSjöstrand, Johannes. "Eigenvalue distribution for non-self-adjoint operators on compact manifolds with small multiplicative random perturbations." Annales de la faculté des sciences de Toulouse Mathématiques 19.2 (2010): 277-301. <http://eudml.org/doc/115877>.
@article{Sjöstrand2010,
abstract = {In this work we extend a previous work about the Weyl asymptotics of the distribution of eigenvalues of non-self-adjoint differential operators with small multiplicative random perturbations, by treating the case of operators on compact manifolds},
affiliation = {IMB, Université de Bourgogne 9, Av. A. Savary, BP 47870 FR-21780 Dijon Cédex and UMR 5584, CNRS},
author = {Sjöstrand, Johannes},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {spectral theory; non-self-adjoint operators; random perturbations},
language = {eng},
month = {4},
number = {2},
pages = {277-301},
publisher = {Université Paul Sabatier, Toulouse},
title = {Eigenvalue distribution for non-self-adjoint operators on compact manifolds with small multiplicative random perturbations},
url = {http://eudml.org/doc/115877},
volume = {19},
year = {2010},
}
TY - JOUR
AU - Sjöstrand, Johannes
TI - Eigenvalue distribution for non-self-adjoint operators on compact manifolds with small multiplicative random perturbations
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2010/4//
PB - Université Paul Sabatier, Toulouse
VL - 19
IS - 2
SP - 277
EP - 301
AB - In this work we extend a previous work about the Weyl asymptotics of the distribution of eigenvalues of non-self-adjoint differential operators with small multiplicative random perturbations, by treating the case of operators on compact manifolds
LA - eng
KW - spectral theory; non-self-adjoint operators; random perturbations
UR - http://eudml.org/doc/115877
ER -
References
top- W. Bordeaux Montrieux, Loi de Weyl presque sûre et résolvante pour des opérateurs différentiels non-autoadjoints, Thesis, CMLS, Ecole Polytechnique, 2008. http://pastel.paristech.org/5367/
- W. Bordeaux Montrieux, J. Sjöstrand, Almost sure Weyl asymptotics for non-self-adjoint elliptic operators on compact manifolds, Ann. Fac. Sci. Toulouse, to appear. http://arxiv.org/abs/0903.2937 Zbl1228.47046
- M. Dimassi, J. Sjöstrand, Spectral asymptotics in the semi-classical limit, London Math. Soc. Lecture Notes Ser., 268, Cambridge Univ. Press, (1999). Zbl0926.35002MR1735654
- I.C. Gohberg, M.G. Krein, Introduction to the theory of linear non-selfadjoint operators, Translations of mathematical monographs, Vol 18, AMS, Providence, R.I. (1969). Zbl0181.13504MR246142
- A. Grigis, J. Sjöstrand, Microlocal analysis for differential operators, London Math. Soc. Lecture Notes Ser., 196, Cambridge Univ. Press, (1994). Zbl0804.35001MR1269107
- M. Hager, Instabilité spectrale semiclassique pour des opérateurs non-autoadjoints. I. Un modèle, Ann. Fac. Sci. Toulouse Math. (6)15(2)(2006), 243–280. Zbl1131.34057MR2244217
- M. Hager, Instabilité spectrale semiclassique d’opérateurs non-autoadjoints. II. Ann. Henri Poincaré, 7(6)(2006), 1035–1064. Zbl1115.81032MR2267057
- M. Hager, J. Sjöstrand, Eigenvalue asymptotics for randomly perturbed non-selfadjoint operators, Math. Annalen, 342(1)(2008), 177–243. Zbl1151.35063MR2415321
- L. Hörmander, Fourier integral operators I, Acta Math., 127(1971), 79–183. Zbl0212.46601MR388463
- A. Iantchenko, J. Sjöstrand, M. Zworski, Birkhoff normal forms in semi-classical inverse problems, Math. Res. Lett. 9(2-3)(2002), 337–362. Zbl1258.35208MR1909649
- A. Melin, J. Sjöstrand, Determinants of pseudodifferential operators and complex deformations of phase space. Methods and Applications of Analysis, 9(2)(2002), 177-238. Zbl1082.35176MR1957486
- D. Robert, Autour de l’approximation semi-classique, Progress in Mathematics, 68. Birkhäuser Boston, Inc., Boston, MA, 1987. Zbl0621.35001MR897108
- R.T. Seeley, Complex powers of an elliptic operator. 1967 Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966) pp. 288–307 Amer. Math. Soc., Providence, R.I. Zbl0159.15504MR237943
- J. Sjöstrand, Resonances for bottles and trace formulae, Math. Nachr., 221(2001), 95–149. Zbl0979.35109MR1806367
- J. Sjöstrand, Eigenvalue distribution for non-self-adjoint operators with small multiplicative random perturbations, Annales Fac. Sci. Toulouse, 18(4)(2009), 739–795. Zbl1194.47058MR2590387
- J. Sjöstrand, M. Zworski, Fractal upper bounds on the density of semiclassical resonances, Duke Math J, 137(3)(2007), 381-459. Zbl1201.35189MR2309150
- J. Sjöstrand, M. Zworski, Elementary linear algebra for advanced spectral problems, Annales Inst. Fourier, 57(7)(2007), 2095–2141. Zbl1140.15009MR2394537
- J. Wunsch, M. Zworski, The FBI transform on compact manifolds, Trans. A.M.S., 353(3)(2001), 1151–1167. Zbl0974.35005MR1804416
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.