Eigenvalue distribution for non-self-adjoint operators on compact manifolds with small multiplicative random perturbations

Johannes Sjöstrand[1]

  • [1] IMB, Université de Bourgogne 9, Av. A. Savary, BP 47870 FR-21780 Dijon Cédex and UMR 5584, CNRS

Annales de la faculté des sciences de Toulouse Mathématiques (2010)

  • Volume: 19, Issue: 2, page 277-301
  • ISSN: 0240-2963

Abstract

top
In this work we extend a previous work about the Weyl asymptotics of the distribution of eigenvalues of non-self-adjoint differential operators with small multiplicative random perturbations, by treating the case of operators on compact manifolds

How to cite

top

Sjöstrand, Johannes. "Eigenvalue distribution for non-self-adjoint operators on compact manifolds with small multiplicative random perturbations." Annales de la faculté des sciences de Toulouse Mathématiques 19.2 (2010): 277-301. <http://eudml.org/doc/115877>.

@article{Sjöstrand2010,
abstract = {In this work we extend a previous work about the Weyl asymptotics of the distribution of eigenvalues of non-self-adjoint differential operators with small multiplicative random perturbations, by treating the case of operators on compact manifolds},
affiliation = {IMB, Université de Bourgogne 9, Av. A. Savary, BP 47870 FR-21780 Dijon Cédex and UMR 5584, CNRS},
author = {Sjöstrand, Johannes},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {spectral theory; non-self-adjoint operators; random perturbations},
language = {eng},
month = {4},
number = {2},
pages = {277-301},
publisher = {Université Paul Sabatier, Toulouse},
title = {Eigenvalue distribution for non-self-adjoint operators on compact manifolds with small multiplicative random perturbations},
url = {http://eudml.org/doc/115877},
volume = {19},
year = {2010},
}

TY - JOUR
AU - Sjöstrand, Johannes
TI - Eigenvalue distribution for non-self-adjoint operators on compact manifolds with small multiplicative random perturbations
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2010/4//
PB - Université Paul Sabatier, Toulouse
VL - 19
IS - 2
SP - 277
EP - 301
AB - In this work we extend a previous work about the Weyl asymptotics of the distribution of eigenvalues of non-self-adjoint differential operators with small multiplicative random perturbations, by treating the case of operators on compact manifolds
LA - eng
KW - spectral theory; non-self-adjoint operators; random perturbations
UR - http://eudml.org/doc/115877
ER -

References

top
  1. W. Bordeaux Montrieux, Loi de Weyl presque sûre et résolvante pour des opérateurs différentiels non-autoadjoints, Thesis, CMLS, Ecole Polytechnique, 2008. http://pastel.paristech.org/5367/ 
  2. W. Bordeaux Montrieux, J. Sjöstrand, Almost sure Weyl asymptotics for non-self-adjoint elliptic operators on compact manifolds, Ann. Fac. Sci. Toulouse, to appear. http://arxiv.org/abs/0903.2937 Zbl1228.47046
  3. M. Dimassi, J. Sjöstrand, Spectral asymptotics in the semi-classical limit, London Math. Soc. Lecture Notes Ser., 268, Cambridge Univ. Press, (1999). Zbl0926.35002MR1735654
  4. I.C. Gohberg, M.G. Krein, Introduction to the theory of linear non-selfadjoint operators, Translations of mathematical monographs, Vol 18, AMS, Providence, R.I. (1969). Zbl0181.13504MR246142
  5. A. Grigis, J. Sjöstrand, Microlocal analysis for differential operators, London Math. Soc. Lecture Notes Ser., 196, Cambridge Univ. Press, (1994). Zbl0804.35001MR1269107
  6. M. Hager, Instabilité spectrale semiclassique pour des opérateurs non-autoadjoints. I. Un modèle, Ann. Fac. Sci. Toulouse Math. (6)15(2)(2006), 243–280. Zbl1131.34057MR2244217
  7. M. Hager, Instabilité spectrale semiclassique d’opérateurs non-autoadjoints. II. Ann. Henri Poincaré, 7(6)(2006), 1035–1064. Zbl1115.81032MR2267057
  8. M. Hager, J. Sjöstrand, Eigenvalue asymptotics for randomly perturbed non-selfadjoint operators, Math. Annalen, 342(1)(2008), 177–243. Zbl1151.35063MR2415321
  9. L. Hörmander, Fourier integral operators I, Acta Math., 127(1971), 79–183. Zbl0212.46601MR388463
  10. A. Iantchenko, J. Sjöstrand, M. Zworski, Birkhoff normal forms in semi-classical inverse problems, Math. Res. Lett. 9(2-3)(2002), 337–362. Zbl1258.35208MR1909649
  11. A. Melin, J. Sjöstrand, Determinants of pseudodifferential operators and complex deformations of phase space. Methods and Applications of Analysis, 9(2)(2002), 177-238. Zbl1082.35176MR1957486
  12. D. Robert, Autour de l’approximation semi-classique, Progress in Mathematics, 68. Birkhäuser Boston, Inc., Boston, MA, 1987. Zbl0621.35001MR897108
  13. R.T. Seeley, Complex powers of an elliptic operator. 1967 Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966) pp. 288–307 Amer. Math. Soc., Providence, R.I. Zbl0159.15504MR237943
  14. J. Sjöstrand, Resonances for bottles and trace formulae, Math. Nachr., 221(2001), 95–149. Zbl0979.35109MR1806367
  15. J. Sjöstrand, Eigenvalue distribution for non-self-adjoint operators with small multiplicative random perturbations, Annales Fac. Sci. Toulouse, 18(4)(2009), 739–795. Zbl1194.47058MR2590387
  16. J. Sjöstrand, M. Zworski, Fractal upper bounds on the density of semiclassical resonances, Duke Math J, 137(3)(2007), 381-459. Zbl1201.35189MR2309150
  17. J. Sjöstrand, M. Zworski, Elementary linear algebra for advanced spectral problems, Annales Inst. Fourier, 57(7)(2007), 2095–2141. Zbl1140.15009MR2394537
  18. J. Wunsch, M. Zworski, The FBI transform on compact C manifolds, Trans. A.M.S., 353(3)(2001), 1151–1167. Zbl0974.35005MR1804416

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.