On certain Galois representations related to the modular curve X 1 ( p )

Ehud De Shalit

Compositio Mathematica (1995)

  • Volume: 95, Issue: 1, page 69-100
  • ISSN: 0010-437X

How to cite

top

De Shalit, Ehud. "On certain Galois representations related to the modular curve $X_1(p)$." Compositio Mathematica 95.1 (1995): 69-100. <http://eudml.org/doc/90345>.

@article{DeShalit1995,
author = {De Shalit, Ehud},
journal = {Compositio Mathematica},
keywords = {modular forms; Hecke algebras; Tate -adic period; Mazur-Tate conjecture; modular elliptic curve; -adic unit; -adic logarithm; deformations of Galois representations; exceptional zero conjecture},
language = {eng},
number = {1},
pages = {69-100},
publisher = {Kluwer Academic Publishers},
title = {On certain Galois representations related to the modular curve $X_1(p)$},
url = {http://eudml.org/doc/90345},
volume = {95},
year = {1995},
}

TY - JOUR
AU - De Shalit, Ehud
TI - On certain Galois representations related to the modular curve $X_1(p)$
JO - Compositio Mathematica
PY - 1995
PB - Kluwer Academic Publishers
VL - 95
IS - 1
SP - 69
EP - 100
LA - eng
KW - modular forms; Hecke algebras; Tate -adic period; Mazur-Tate conjecture; modular elliptic curve; -adic unit; -adic logarithm; deformations of Galois representations; exceptional zero conjecture
UR - http://eudml.org/doc/90345
ER -

References

top
  1. [A] Artin, M.Néron models, in: G. Cornell and J. Silverman (eds.) Arithmetic Geometry, Springer-Verlag, New York (1986). MR861969
  2. [B-L-R] Bosch, S., Lutkebohmert, W. and Raynaud, M., Néron Models. Springer-Verlag. Zbl0705.14001MR1045822
  3. [dS1] de Shalit, E., Kronecker's polynomial, supersingular elliptic curves, and p-adic periods of modular curves. Contemp. Math.165, AMS (1994), 135-148. Zbl0863.14015
  4. [dS2] de Shalit, E., P-adic periods and modular symbols of elliptic curves of prime conductor. To appear in Invent. Math. Zbl1044.11576MR1346205
  5. [dS3] de Shalit, E., On the p-adic periods of X0(p). To appear in Math. Ann. Zbl0864.14014MR1355000
  6. [G-S] Greenberg, R. and Stevens, G., P-adic L functions and p-adic periods of modular forms, Invent. Math.111 (1993) 407-447. Zbl0778.11034MR1198816
  7. [Gr] Gross, B., Heights and special values of L series, Proceedings of the 1985 Montreal conference in Number Theory. CMS conference proceedings, vol. 7. Zbl0623.10019
  8. [Groth] Grothendieck, A., Modeles de néron et monodromie, in: SGA 71, LNM288, Springer-Verlag (1972). Zbl0248.14006MR354656
  9. [Hi] Hida, H., Galois representations into GL2(Zp[[X]]) attached to ordinary cusp forms, Inv. Math.85 (1986) 543-613. Zbl0612.10021MR848685
  10. [K-M] Katz, N. and Mazur, B., Arithmetic moduli of elliptic curves, Ann. Math. Stud.108. Princeton (1985). Zbl0576.14026
  11. [M-D] Manin, J. and Drinfeld, V.G., Periods of p-adic Schottky groups, J.f.d. reine u. angew. Math.262/3 (1973) 239-247. Zbl0275.14017MR396582
  12. [M] Mazur, B., Modular curves and the Eisenstein ideal. Publ. Math. I.H.E.S.47 (1977) 33-186. Zbl0394.14008MR488287
  13. [M-T] Mazur, B. and Tate, J., Refined conjectures of the "Birch and Swinnerton-Dyer type", Duke Math. J.54 (1987) 711-750. Zbl0636.14004MR899413
  14. [M-T-T] Mazur, B., Tate, J. and Teitelbaum, J., On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Inv. Math.84 (1986) 1-48. Zbl0699.14028MR830037
  15. [M-W1] Mazur, B. and Wiles, A., Class fields of abelian extensions of Q, Inv. Math.76 (1984) 179-330. Zbl0545.12005MR742853
  16. [M-W2] Mazur, B. and Wiles, A., On p-adic analytic families of Galois representations, Compositio Math.59 (1986) 231-264. Zbl0654.12008MR860140
  17. [Mi] Milne, J., Etale Cohomology, PUP, Princeton (1980). Zbl0433.14012MR559531
  18. [Se] Serre, J.-P., Groupes Algébriques et Corps de Classes, Hermann, Paris (1959). Zbl0097.35604
  19. [W] Wiles, A., Modular curves and the class group of Q(ζp), Inv. Math.58 (1980) 1-35. Zbl0436.12004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.