Fractional Sobolev norms and structure of Carnot-Carathéodory balls for Hörmander vector fields

Daniele Morbidelli

Studia Mathematica (2000)

  • Volume: 139, Issue: 3, page 213-244
  • ISSN: 0039-3223

Abstract

top
We study the notion of fractional L p -differentiability of order s ( 0 , 1 ) along vector fields satisfying the Hörmander condition on n . We prove a modified version of the celebrated structure theorem for the Carnot-Carathéodory balls originally due to Nagel, Stein and Wainger. This result enables us to demonstrate that different W s , p -norms are equivalent. We also prove a local embedding W 1 , p W s , q , where q is a suitable exponent greater than p.

How to cite

top

Morbidelli, Daniele. "Fractional Sobolev norms and structure of Carnot-Carathéodory balls for Hörmander vector fields." Studia Mathematica 139.3 (2000): 213-244. <http://eudml.org/doc/216720>.

@article{Morbidelli2000,
abstract = {We study the notion of fractional $L^p$-differentiability of order $s∈(0,1)$ along vector fields satisfying the Hörmander condition on $ℝ^n$. We prove a modified version of the celebrated structure theorem for the Carnot-Carathéodory balls originally due to Nagel, Stein and Wainger. This result enables us to demonstrate that different $W^\{s,p\}$-norms are equivalent. We also prove a local embedding $W^\{1,p\} ⊂ W^\{s,q\}$, where q is a suitable exponent greater than p.},
author = {Morbidelli, Daniele},
journal = {Studia Mathematica},
keywords = {fractional -differentiability; Carnot-Carathéodory balls; Hörmander condition; equivalent norms},
language = {eng},
number = {3},
pages = {213-244},
title = {Fractional Sobolev norms and structure of Carnot-Carathéodory balls for Hörmander vector fields},
url = {http://eudml.org/doc/216720},
volume = {139},
year = {2000},
}

TY - JOUR
AU - Morbidelli, Daniele
TI - Fractional Sobolev norms and structure of Carnot-Carathéodory balls for Hörmander vector fields
JO - Studia Mathematica
PY - 2000
VL - 139
IS - 3
SP - 213
EP - 244
AB - We study the notion of fractional $L^p$-differentiability of order $s∈(0,1)$ along vector fields satisfying the Hörmander condition on $ℝ^n$. We prove a modified version of the celebrated structure theorem for the Carnot-Carathéodory balls originally due to Nagel, Stein and Wainger. This result enables us to demonstrate that different $W^{s,p}$-norms are equivalent. We also prove a local embedding $W^{1,p} ⊂ W^{s,q}$, where q is a suitable exponent greater than p.
LA - eng
KW - fractional -differentiability; Carnot-Carathéodory balls; Hörmander condition; equivalent norms
UR - http://eudml.org/doc/216720
ER -

References

top
  1. [1] D. Bakry, T. Coulhon, M. Ledoux and L. Saloff-Coste, Sobolev inequalities in disguise, Indiana Univ. Math. J. 44 (1995), 1033-1074. 
  2. [2] G. Ben Arous and M. Gradinaru, Singularities of hypoelliptic Green functions, Potential Anal. 8 (1998), 217-258. Zbl0909.60058
  3. [3] S. Berhanu and I. Pesenson, The trace problem for vector fields satisfying Hörmander's condition, Math. Z. 231 (1999), 103-122. Zbl0924.46026
  4. [4] M. Biroli and U. Mosco, Sobolev inequalities on homogeneous spaces, Potential Anal. 4 (1995), 311-324. Zbl0833.46020
  5. [5] B J. M. Bony, Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble) 19 (1969), no. 1, 277-304. Zbl0176.09703
  6. [6] S. Buckley, P. Koskela and G. Lu, Subelliptic Poincaré estimates: the case p < 1, Publ. Math. 39 (1995), 313-334. 
  7. [7] L. Capogna, D. Danielli and N. Garofalo, An embedding theorem and the Harnack inequality for nonlinear subelliptic equations, Comm. Partial Differential Equations 18 (1993), 1765-1794. Zbl0802.35024
  8. [8] L. Capogna, D. Danielli and N. Garofalo, The geometric Sobolev embedding for vector fields and the isoperimetric inequality, Comm. Anal. Geom. 2 (1994), 203-215. Zbl0864.46018
  9. [9] L. Capogna, D. Danielli and N. Garofalo, Subelliptic mollifiers and a basic pointwise estimate of Poincaré type, Math. Z. 226 (1997), 147-154. Zbl0893.35023
  10. [10] L. Capogna, D. Danielli and N. Garofalo, Capacitary estimates and the local behavior of solutions to nonlinear subelliptic equations, Amer. J. Math. 118 (1996), 1153-1196. Zbl0878.35020
  11. [11] J. Y. Chemin et C. J. Xu, Inclusions de Sobolev en calcul de Weyl-Hörmander et champs de vecteurs sous-elliptiques, Ann. Sci. École Norm. Sup. (4) 30 (1997), 719-751. Zbl0892.35161
  12. [12] V. M. Chernikov and S. K. Vodop'yanov, Sobolev spaces and hypoelliptic equations I, II, Siberian Adv. Math. 6 (1996), no. 3, 27-67, and no. 4, 64-96. 
  13. [13] C W. L. Chow, Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung, Math. Ann. 117 (1940), 98-105. Zbl65.0398.01
  14. [14] G. Citti and G. Di Fazio, Hölder continuity of the solutions for operators which are sum of squares of vector fields plus a potential, Proc. Amer. Math. Soc. 122 (1994), 741-750. Zbl0809.35013
  15. [15] G. Citti, N. Garofalo and E. Lanconelli, Harnack's inequality for sum of squares of vector fields plus a potential, Amer. J. Math. 115 (1993), 699-734. Zbl0795.35018
  16. [16] D D. Danielli, A compact embedding theorem for a class of degenerate Sobolev spaces, Rend. Sem. Mat. Univ. Politec. Torino 49 (1991), 339-420. Zbl0789.46026
  17. [17] C. Fefferman and D. H. Phong, Subelliptic eigenvalue problems, in: Proc. Conf. on Harmonic Analysis in honor of Antoni Zygmund, Wadsworth, Belmont, CA, 1983, 590-606. 
  18. [18] C. Fefferman and A. Sánchez-Calle, Fundamental solution for second order subelliptic operators, Ann. of Math. 124 (1986), 247-272. 
  19. [19] F G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), 161-207. Zbl0312.35026
  20. [20] B. Franchi, S. Gallot and R. Wheeden, Sobolev and isoperimetric inequalities for degenerate metrics, Math. Ann. 300 (1994), 557-571. Zbl0830.46027
  21. [21] B. Franchi et E. Lanconelli, Une métrique associée à une classe d'opérateurs elliptiques dégénérés, in: Conference on Linear Partial and Pseudodifferential Operators, Rend. Sem. Mat. Univ. Politec. Torino (1983) (special issue), 105-114. Zbl0553.35033
  22. [22] B. Franchi et E. Lanconelli, Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa 10 (1983), 523-541. Zbl0552.35032
  23. [23] B. Franchi et E. Lanconelli, An embedding theorem for Sobolev spaces related to non-smooth vector fields and Harnack inequality, Comm. Partial Differential Equations 9 (1984), 1237-1264. Zbl0589.46023
  24. [24] B. Franchi, G. Lu and R. Wheeden, Representation formulas and weighted Poincaré inequalities for Hörmander vector fields, Ann. Inst. Fourier (Grenoble) 45 (1995), 577-604. Zbl0820.46026
  25. [25] B. Franchi, G. Lu and R. Wheeden, A relationship between Poincaré type inequalities and representation formulas in spaces of homogeneous type, Internat. Math. Res. Notices 1996, no. 1, 1-14. Zbl0856.43006
  26. [26] B. Franchi, R. Serapioni and F. Serra Cassano, Approximation and embedding theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields, Boll. Un. Mat. Ital. B (7) 11 (1997), 83-117. Zbl0952.49010
  27. [27] N. Garofalo and D. M. Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math. 49 (1996), 1081-1144. Zbl0880.35032
  28. [28] N. Garofalo and D. M. Nhieu, Lipschitz continuity, global smooth approximations and extension theorems for Sobolev functions in Carnot-Carathéodory spaces, J. Anal. Math. 74 (1998), 67-97. Zbl0906.46026
  29. [29] P. Hajłasz and P. Koskela, Sobolev meets Poincaré, C. R. Acad. Sci. Paris 320 (1995), 1211-1215. Zbl0837.46024
  30. [30] P. Hajłasz and P. Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. (to appear). Zbl0954.46022
  31. [31] P. Hajłasz and P. Strzelecki, Subelliptic p-harmonic maps into spheres and the ghost of Hardy spaces, Math. Ann. 312 (1998), 341-362. Zbl0914.35029
  32. [32] G. Hochschild, La structure des groupes de Lie, Dunod, Paris, 1968. 
  33. [33] H L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147-171. Zbl0156.10701
  34. [34] L. Hörmander and A. Melin, Free systems of vector fields, Ark. Mat. 16 (1978), 83-88. Zbl0383.35013
  35. [35] J D. Jerison, The Poincaré inequality for vector fields satisfying Hörmander's condition, Duke Math. J. 53 (1986), 503-523. Zbl0614.35066
  36. [36] D. Jerison and A. Sánchez-Calle, Estimates for the heat kernel for a sum of squares of vector fields, Indiana Univ. Math. J. 35 (1986), 835-854. 
  37. [37] D. Jerison and A. Sánchez-Calle, Subelliptic second order differential operators, in: Lecture Notes in Math. 1277, Springer, 1987, 46-77. 
  38. [38] K N. V. Krylov, Hölder continuity and L p estimates for elliptic equations under general Hörmander’s condition, Topol. Methods Nonlinear Anal. 9 (1997), 249-258. Zbl0892.35066
  39. [39] S. Kusuoka and D. W. Strook, Applications of the Malliavin calculus, J. Fac. Sci. Univ. Tokyo Sect. 1A Math. 34 (1987), 392-442. 
  40. [40] S. Kusuoka and D. W. Strook, Long time estimates for the heat kernel associated with a uniformly subelliptic symmetric second order operator, Ann. of Math. 127 (1988), 165-189. Zbl0699.35025
  41. [41] E. Lanconelli, Stime subellittiche e metriche Riemanniane singolari, Seminario di Analisi Matematica, Dipartimento di Matematica, Università di Bologna, A. A. 1982-83. 
  42. [42] E. Lanconelli and D. Morbidelli, On the Poincaré inequality for vector fields, Ark. Mat. (to appear). Zbl1131.46304
  43. [43] G. Lu, Existence and size estimates for the Green's functions of differential operators constructed from degenerate vector fields, Comm. Partial Differential Equations 17 (1992), 1213-1251. Zbl0798.35002
  44. [44] G. Lu, Embedding theorems into Lipschitz and BMO spaces and applications to quasilinear subelliptic differential equations, Publ. Math. 40 (1996), 301-329. Zbl0873.35006
  45. [45] G. Lu, A note on a Poincaré type inequality for solutions to subelliptic equations, Comm. Partial Differential Equations 21 (1996), 235-254. Zbl0847.35044
  46. [46] P. Maheux et L. Saloff-Coste, Analyse sur les boules d'un opérateur sous-elliptique, Math. Ann. 303 (1995), 713-746. 
  47. [47] A. Nagel, E. M. Stein and S. Wainger, Balls and metrics defined by vector fields I: basic properties, Acta Math. 155 (1985), 103-147. Zbl0578.32044
  48. [48] R W. C. Rheinboldt, Local mapping relations and global implicit function theorems, Trans. Amer. Math. Soc. 138 (1969), 183-198. Zbl0175.45201
  49. [49] L. Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), 247-320. Zbl0346.35030
  50. [50] S K. Saka, Besov spaces and Sobolev spaces on a nilpotent Lie group, Tôhoku Math. J. 31 (1979), 383-437. Zbl0429.43004
  51. [51] L. Saloff-Coste, A note on Poincaré, Sobolev and Harnack inequalities, Internat. Math. Res. Notices 1992, no. 2, 27-38. Zbl0769.58054
  52. [52] A. Sánchez-Calle, Fundamental solutions and geometry of sum of squares of vector fields, Invent. Math. 78 (1984), 143-160. 
  53. [53] J.-P. Serre, Lie Algebras and Lie Groups, Lecture Notes in Math. 1500, Springer, 1992. 
  54. [54] T. Varopoulos, L. Saloff-Coste and T. Coulhon, Analysis and Geometry on Groups, Cambridge Univ. Press, 1992. Zbl0813.22003
  55. [55] S. K. Vodop'yanov and I. G. Markina, Exceptional sets for solutions of subelliptic equations, Siberian Math. J. 36 (1995), 694-706. 
  56. [56] X C. J. Xu, Regularity for quasi linear second order subelliptic equations, Comm. Pure Appl. Math. 45 (1992), 77-96. Zbl0827.35023

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.