The level crossing problem in semi-classical analysis. II. The Hermitian case

Yves Colin de Verdière[1]

  • [1] Institut Fourier, 100 rue des Maths, 38402 Saint-Martin d'Hères (France)

Annales de l’institut Fourier (2004)

  • Volume: 54, Issue: 5, page 1423-1441
  • ISSN: 0373-0956

Abstract

top
This paper is the second part of the paper ``The level crossing problem in semi-classical analysis I. The symmetric case''(Annales de l'Institut Fourier in honor of Frédéric Pham). We consider here the case where the dispersion matrix is complex Hermitian.

How to cite

top

Colin de Verdière, Yves. "The level crossing problem in semi-classical analysis. II. The Hermitian case." Annales de l’institut Fourier 54.5 (2004): 1423-1441. <http://eudml.org/doc/116147>.

@article{ColindeVerdière2004,
abstract = {This paper is the second part of the paper ``The level crossing problem in semi-classical analysis I. The symmetric case''(Annales de l'Institut Fourier in honor of Frédéric Pham). We consider here the case where the dispersion matrix is complex Hermitian.},
affiliation = {Institut Fourier, 100 rue des Maths, 38402 Saint-Martin d'Hères (France)},
author = {Colin de Verdière, Yves},
journal = {Annales de l’institut Fourier},
keywords = {mode conversion; polarization; Born-Oppenheimer approximation; eigenvalues crossing; pseudo-differential system; semi-classical analysis; normal form; microlocal solutions; symplectic manifold},
language = {eng},
number = {5},
pages = {1423-1441},
publisher = {Association des Annales de l'Institut Fourier},
title = {The level crossing problem in semi-classical analysis. II. The Hermitian case},
url = {http://eudml.org/doc/116147},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Colin de Verdière, Yves
TI - The level crossing problem in semi-classical analysis. II. The Hermitian case
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 5
SP - 1423
EP - 1441
AB - This paper is the second part of the paper ``The level crossing problem in semi-classical analysis I. The symmetric case''(Annales de l'Institut Fourier in honor of Frédéric Pham). We consider here the case where the dispersion matrix is complex Hermitian.
LA - eng
KW - mode conversion; polarization; Born-Oppenheimer approximation; eigenvalues crossing; pseudo-differential system; semi-classical analysis; normal form; microlocal solutions; symplectic manifold
UR - http://eudml.org/doc/116147
ER -

References

top
  1. V. Arnold, Mathematical Methods of Classical Mechanics, (1988), Springer Zbl0386.70001
  2. P. Braam, H. Duistermaat, Normal forms of real symmetric systems with multiplicity, Indag. Math., N.S. (4) (1993), 407-421 Zbl0802.35176MR1252985
  3. Y. Colin de Verdière, The level crossing problem in semi-classical analysis I. The symmetric case, Ann. Inst. Fourier 53 (2003), 1023-1054 Zbl1113.35151MR2033509
  4. Y. Colin de Verdière, Bohr-Sommerfeld phases for avoided crossings, (2004) 
  5. Y. Colin de Verdière, M. Lombardi, J. Pollet, The microlocal Landau-Zener formula, Annales de l'IHP (Physique théorique) 71 (1999), 95-127 Zbl0986.81027MR1704655
  6. Y. Colin de Verdière, J. Vey, Le lemme de Morse isochore, Topology 18 (1979), 283-293 Zbl0441.58003MR551010
  7. F. Faure, B. Zhilinskii, Topological Chern Indices in Molecular Spectra, Phys. Rev. Letters 85 (2000), 960-963 
  8. F. Faure, B. Zhilinskii, Topological properties of the Born-Oppenheimer approximation and implications for the exact spectrum, Lett. Math. Phys 55 (2001), 219-239 Zbl0981.81028MR1843445
  9. C. Fermanian-Kammerer, A non-commutative Landau-Zener formula, Math. Nacht 271 (2004), 22-50 Zbl1050.35093MR2068882
  10. C. Fermanian-Kammerer, Wigner measures and molecular propagation through generic energy level crossings, Rev. Math. Phys 15 (2003), 1285-1317 Zbl1069.81548MR2038071
  11. C. Fermanian-Kammerer, Semi-classical analysis of generic codimension 3 crossings, International Math. Research Notices 45 (2004), 2391-2435 Zbl1098.81038MR2076099
  12. C. Fermanian-Kammerer, P. Gérard, A Landau-Zener formula for non-degenerated involutive codimension 3 crossings, Ann. Henri Poincaré 4 (2003), 513-552 Zbl1049.81029MR2007256
  13. W. Flynn, R. Littlejohn, Semi-classical theory of spin-orbit coupling, Phys. Rev. A 45 (1992), 7697-7717 MR1167156
  14. G. Hagedorn, Molecular Propagation through Electron Energy Level Crossings, Memoirs of the AMS 536 (1994) Zbl0833.92025MR1234882
  15. A. Joye, Proof of the Landau-Zener Formula, Asymptotic Analysis 9 (1994), 209-258 Zbl0814.35109MR1295294
  16. A. Kaufman, E. Tracy, Ray Helicity: a Geometric Invariant for Multidimensional Resonant Wave Conversion, Phys. Rev. Lett 91 (2003) 
  17. J. Moser, On the generalization of a theorem of Liapounoff, Comm. Pure Appl. Math 11 (1958), 257-271 Zbl0082.08003MR96021
  18. E. Nelson, Topics in dynamics, I: Flows, (1969), Princeton Univ. Press Zbl0197.10702MR282379
  19. V. Rousse, Landau-Zener Transitions for Eigenvalue Avoided Crossings in the Adiabatic and Born-Oppenheimer Approximations, Asymptotic Analysis 37 (2004), 293-328 Zbl1079.81020MR2047743
  20. J. Williamson, On an algebraic problem concerning the normal forms of linear dynamical systems, American J. Maths 58 (1936), 141-163 Zbl0013.28401MR1507138

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.