The level crossing problem in semi-classical analysis. II. The Hermitian case
- [1] Institut Fourier, 100 rue des Maths, 38402 Saint-Martin d'Hères (France)
Annales de l’institut Fourier (2004)
- Volume: 54, Issue: 5, page 1423-1441
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topColin de Verdière, Yves. "The level crossing problem in semi-classical analysis. II. The Hermitian case." Annales de l’institut Fourier 54.5 (2004): 1423-1441. <http://eudml.org/doc/116147>.
@article{ColindeVerdière2004,
abstract = {This paper is the second part of the paper ``The level crossing problem in semi-classical
analysis I. The symmetric case''(Annales de l'Institut Fourier in honor of Frédéric
Pham). We consider here the case where the dispersion matrix is complex Hermitian.},
affiliation = {Institut Fourier, 100 rue des Maths, 38402 Saint-Martin d'Hères (France)},
author = {Colin de Verdière, Yves},
journal = {Annales de l’institut Fourier},
keywords = {mode conversion; polarization; Born-Oppenheimer approximation; eigenvalues crossing; pseudo-differential system; semi-classical analysis; normal form; microlocal solutions; symplectic manifold},
language = {eng},
number = {5},
pages = {1423-1441},
publisher = {Association des Annales de l'Institut Fourier},
title = {The level crossing problem in semi-classical analysis. II. The Hermitian case},
url = {http://eudml.org/doc/116147},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Colin de Verdière, Yves
TI - The level crossing problem in semi-classical analysis. II. The Hermitian case
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 5
SP - 1423
EP - 1441
AB - This paper is the second part of the paper ``The level crossing problem in semi-classical
analysis I. The symmetric case''(Annales de l'Institut Fourier in honor of Frédéric
Pham). We consider here the case where the dispersion matrix is complex Hermitian.
LA - eng
KW - mode conversion; polarization; Born-Oppenheimer approximation; eigenvalues crossing; pseudo-differential system; semi-classical analysis; normal form; microlocal solutions; symplectic manifold
UR - http://eudml.org/doc/116147
ER -
References
top- V. Arnold, Mathematical Methods of Classical Mechanics, (1988), Springer Zbl0386.70001
- P. Braam, H. Duistermaat, Normal forms of real symmetric systems with multiplicity, Indag. Math., N.S. (4) (1993), 407-421 Zbl0802.35176MR1252985
- Y. Colin de Verdière, The level crossing problem in semi-classical analysis I. The symmetric case, Ann. Inst. Fourier 53 (2003), 1023-1054 Zbl1113.35151MR2033509
- Y. Colin de Verdière, Bohr-Sommerfeld phases for avoided crossings, (2004)
- Y. Colin de Verdière, M. Lombardi, J. Pollet, The microlocal Landau-Zener formula, Annales de l'IHP (Physique théorique) 71 (1999), 95-127 Zbl0986.81027MR1704655
- Y. Colin de Verdière, J. Vey, Le lemme de Morse isochore, Topology 18 (1979), 283-293 Zbl0441.58003MR551010
- F. Faure, B. Zhilinskii, Topological Chern Indices in Molecular Spectra, Phys. Rev. Letters 85 (2000), 960-963
- F. Faure, B. Zhilinskii, Topological properties of the Born-Oppenheimer approximation and implications for the exact spectrum, Lett. Math. Phys 55 (2001), 219-239 Zbl0981.81028MR1843445
- C. Fermanian-Kammerer, A non-commutative Landau-Zener formula, Math. Nacht 271 (2004), 22-50 Zbl1050.35093MR2068882
- C. Fermanian-Kammerer, Wigner measures and molecular propagation through generic energy level crossings, Rev. Math. Phys 15 (2003), 1285-1317 Zbl1069.81548MR2038071
- C. Fermanian-Kammerer, Semi-classical analysis of generic codimension 3 crossings, International Math. Research Notices 45 (2004), 2391-2435 Zbl1098.81038MR2076099
- C. Fermanian-Kammerer, P. Gérard, A Landau-Zener formula for non-degenerated involutive codimension crossings, Ann. Henri Poincaré 4 (2003), 513-552 Zbl1049.81029MR2007256
- W. Flynn, R. Littlejohn, Semi-classical theory of spin-orbit coupling, Phys. Rev. A 45 (1992), 7697-7717 MR1167156
- G. Hagedorn, Molecular Propagation through Electron Energy Level Crossings, Memoirs of the AMS 536 (1994) Zbl0833.92025MR1234882
- A. Joye, Proof of the Landau-Zener Formula, Asymptotic Analysis 9 (1994), 209-258 Zbl0814.35109MR1295294
- A. Kaufman, E. Tracy, Ray Helicity: a Geometric Invariant for Multidimensional Resonant Wave Conversion, Phys. Rev. Lett 91 (2003)
- J. Moser, On the generalization of a theorem of Liapounoff, Comm. Pure Appl. Math 11 (1958), 257-271 Zbl0082.08003MR96021
- E. Nelson, Topics in dynamics, I: Flows, (1969), Princeton Univ. Press Zbl0197.10702MR282379
- V. Rousse, Landau-Zener Transitions for Eigenvalue Avoided Crossings in the Adiabatic and Born-Oppenheimer Approximations, Asymptotic Analysis 37 (2004), 293-328 Zbl1079.81020MR2047743
- J. Williamson, On an algebraic problem concerning the normal forms of linear dynamical systems, American J. Maths 58 (1936), 141-163 Zbl0013.28401MR1507138
Citations in EuDML Documents
top- Clotilde Fermanian Kammerer, Caroline Lasser, An algorithm for quantum propagation through electron level crossings.
- Yves Colin de Verdière, The level crossing problem in semi-classical analysis I. The symmetric case
- Clotilde Fermanian Kammerer, Propagation des mesures de Wigner à travers un croisement de codimension 1 dégénéré
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.