The level crossing problem in semi-classical analysis I. The symmetric case
- [1] Université Joseph Fourier, Institut Fourier (unité mixte CNRS-UJF 5582), BP 74, 38402 Saint-Martin d'Hères Cedex (France)
Annales de l’institut Fourier (2003)
- Volume: 53, Issue: 4, page 1023-1054
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topColin de Verdière, Yves. "The level crossing problem in semi-classical analysis I. The symmetric case." Annales de l’institut Fourier 53.4 (2003): 1023-1054. <http://eudml.org/doc/116061>.
@article{ColindeVerdière2003,
abstract = {We describe a microlocal normal form for a symmetric system of pseudo-differential
equations whose principal symbol is a real symmetric matrix with a generic crossing of
eigenvalues. We use it in order to give a precise description of the microlocal solutions.},
affiliation = {Université Joseph Fourier, Institut Fourier (unité mixte CNRS-UJF 5582), BP 74, 38402 Saint-Martin d'Hères Cedex (France)},
author = {Colin de Verdière, Yves},
journal = {Annales de l’institut Fourier},
keywords = {mode conversion; polarization; Born-Oppenheimer approximation; Maxwell equations; eigenvalue crossing; pseudo-differential systems; semi-classical analysis; lagrangian manifold; propagation of singularities; coherent states; symplectic spinors},
language = {eng},
number = {4},
pages = {1023-1054},
publisher = {Association des Annales de l'Institut Fourier},
title = {The level crossing problem in semi-classical analysis I. The symmetric case},
url = {http://eudml.org/doc/116061},
volume = {53},
year = {2003},
}
TY - JOUR
AU - Colin de Verdière, Yves
TI - The level crossing problem in semi-classical analysis I. The symmetric case
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 4
SP - 1023
EP - 1054
AB - We describe a microlocal normal form for a symmetric system of pseudo-differential
equations whose principal symbol is a real symmetric matrix with a generic crossing of
eigenvalues. We use it in order to give a precise description of the microlocal solutions.
LA - eng
KW - mode conversion; polarization; Born-Oppenheimer approximation; Maxwell equations; eigenvalue crossing; pseudo-differential systems; semi-classical analysis; lagrangian manifold; propagation of singularities; coherent states; symplectic spinors
UR - http://eudml.org/doc/116061
ER -
References
top- M. Abramowitz, I. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, (1970), Dover Publication Inc., New York Zbl0171.38503MR1225604
- V. Arnold, Singularities of Caustics and Wave Fronts, (1990), Kluwer Zbl0734.53001MR1151185
- V. Arnold, On the interior scattering of waves, defined by hyperbolic variational principles, J. Geom. Phys. 5 (1988), 305-315 Zbl0699.35199MR1048504
- J.E. Avron, A. Gordon, Born-Oppenheimer wave function near level crossing, Phys. Rev. A 62-06254 (2000)
- M. Born, R. Oppenheimer, Zür Quantentheorie der Molekeln, Annal. Phys. 84 (1927), 457-484 Zbl53.0845.04
- L. Boutet de Monvel, V. Guillemin, The Spectral Theory of Toeplitz Operators, (1981), Princeton Univ. Press Zbl0469.47021MR620794
- P. Braam, H. Duistermaat, Normal forms of real symmetric systems with multiplicity, Indag. Math., N.S. 4 (1993), 407-421 Zbl0802.35176MR1252985
- Y. Colin de Verdière, Singular Lagrangian manifolds and semi-classical analysis, Duke Math. J. 116 (2003), 263-298 Zbl1074.53066MR1953293
- Y. Colin de Verdière, Spectres de Graphes, (1998), Soc. Math. France Zbl0913.05071MR1652692
- Y. Colin de Verdière, The level crossing problem in semi-classical analysis. II. The Hermitian case, (2003) Zbl1113.35151
- Y. Colin de Verdière, M. Lombardi, J. Pollet, The microlocal Landau-Zener formula, Ann. IHP (Phys. théorique) 71 (1999), 95-127 Zbl0986.81027MR1704655
- Y. Colin de Verdière, B. Parisse, Équilibre instable en régime semi-classique. I. Concentration microlocale, Commun. in PDE 19 (1994), 1535-1563 Zbl0819.35116MR1294470
- Y. Colin de Verdière, J. Vey, Le lemme de Morse isochore, Topology 18 (1979), 283-293 Zbl0441.58003MR551010
- J.-M. Combes, On the Born-Oppenheimer approximation, International Symposium on Mathematical Problems in Theoretical Physics, Kyoto Univ., Kyoto 39 (1975), 467-471 Zbl0372.47026
- J.-M. Combes, R. Seiler, Spectral properties of atomic and molecular systems, Quantum dynamics of molecules (1979), 435-482, Univ. Cambridge
- M. Combescure, D. Robert, Semiclassical spreading of quantum wave packets and applications near unstable fixed points of the classical flow, Asymptotic Anal. 14 (1997), 377-404 Zbl0894.35026MR1461126
- P. Exner, A. Joye, Avoided Crossings in Mesoscopic Systems: Electron Propagation on a Non-uniform Magnetic Cylinder, J. Math. Phys. 42 (2001), 4707-4738 Zbl1017.81050MR1855092
- C. Emmrich, A. Weinstein, Geometry of the transport Equation in Multicomponent WKB Approximations, Commun. Math. Phys. 176 (1996), 701-711 Zbl0848.34039MR1376438
- F. Faure, B. Zhilinskii, Topological Chern Indices in Molecular Spectra, Phys. Rev. Letters 85 (2000), 960-963
- F. Faure, B. Zhilinskii, Topological properties of the Born-Oppenheimer approximation and implications for the exact spectrum, Lett. Math. Phys. 55 (2001), 219-239 Zbl0981.81028MR1843445
- C. Fermanian-Kammerer, A non-commutative Landau-Zener formula, (2002) Zbl1050.35093
- C. Fermanian-Kammerer, Une formule de Landau-Zener pour un croisement de codimension 2, Séminaire Équations aux dérivées partielles, École Polytechnique exposé XXI, 9/04 (2002)
- C. Fermanian-Kammerer, C. Lasser, Wigner measures and codimension two crossings, (2002) Zbl1061.81078MR1952198
- W. Flynn, R. Littlejohn, Normal forms for linear mode conversion and Landau-Zener transitions in one dimension, Ann. Physics 234 (1994), 334-403 MR1289934
- W. Flynn, R. Littlejohn, Semi-classical theory of spin-orbit coupling, Phys. Rev. A 45 (1992), 7697-7717 MR1167156
- G. Folland, Harmonic Analysis on Phase Space, (1989), Princeton Univ. Press Zbl0682.43001MR983366
- P. Gérard, C. Fermanian-Kammerer, Mesures semi-classiques et croisement de modes, Bull. Soc. Math. France 130 (2002), 123-168 Zbl0996.35004MR1906196
- P. Gérard, C. Fermanian-Kammerer, A Landau-Zener formula for non-degenerated involutive codimension 3 crossings, (sept. 2002) Zbl1049.81029MR2007256
- V. Guillemin, Symplectic spinors and PDE, Géométrie Symplectique et Physique mathématique (Colloque CNRS Aix-en-Provence) (1974)
- G. Hagedorn, Molecular Propagation through Electron Energy Level Crossings, Memoirs of the AMS 536 (1994) Zbl0833.92025MR1234882
- G. Hagedorn, Higher Order Corrections to the Time-Dependent Born-Oppenheimer Approximation. I: Smooth Potentials, Ann. Math. 124 (1986), 571-590 Zbl0619.35094MR866709
- G. Hagedorn, Raising and lowering operators for semiclassical wave packets, Ann. Phys. 269 (1998), 77-104 Zbl0929.34067MR1650826
- G. Hagedorn, A. Joye, Landau-Zener Transitions through small Electronic Eigenvalues Gaps in the Born-Oppenheimer Approximation, Ann. IHP (Phys. théorique) 68 (1998), 85-134 Zbl0915.35090MR1618922
- G. Hagedorn, A. Joye, Molecular Propapagation through small avoided Crossings of Electron Energy Levels, Rev. Math. Phys. 11 (1999), 41-101 Zbl0965.81138MR1668071
- R. Halberg, Localized coupling between surface- and bottom-intensified flow over topography, J. Phys. Oceanogr. 27 (1997), 977-999
- P. Holm, Generic elastic Media, Physica Scripta 44 (1992), 122-127
- A. Joye, Proof of the Landau-Zener Formula, Asymptotic Analysis 9 (1994), 209-258 Zbl0814.35109MR1295294
- N. Kaidi, M. Rouleux, Forme normale d'un hamiltonien à deux niveaux près d'un point de branchement (limite semi-classique), C. R. Acad. Sci. Paris, Sér. I 317 (1993), 359-364 Zbl0797.58083MR1235449
- M. Karasev, Y. Vorobjev, Integral representations over isotropic submanifolds and equations of zero curvature, Adv. Math. 135 (1998), 220-286 Zbl0926.53030MR1620834
- M. Klein, A. Martinez, R. Seiler, X. Wang, On the Born-Oppenheimer Approximation of Wave Operators in Molecular Scattering Theory, Commun. Math. Phys. 143 (1992), 607-639 Zbl0754.35099MR1145603
- M. Kline, I. Kay, Electromagnetic theory and geometrical optics., (1965), Interscience Publishers Zbl0123.23602MR180094
- L. Landau, Zur Theorie der Energieübertragung. II., Z. Phys. Sowjet. 2 (1932), 46-51 Zbl0005.27801
- L. Landau, E. Lifchitz, Mécanique quantique (théorie non relativiste), (1967), Mir, Moscou Zbl0148.43806
- A. Melin, J. Sjöstrand, Fourier integral operators with complex valued phase functions, Lecture Notes in Math. (1975) Zbl0306.42007MR431289
- R. Melrose, G. Uhlmann, Microlocal structure of involutive conical refraction, Duke Math. J. 46 (1979), 571-582 Zbl0422.58026MR544247
- J. Moser, On the generalization of a theorem of Liapounoff, Comm. Pure Appl. Math. 11 (1958), 257-271 Zbl0082.08003MR96021
- E. Nelson, Topics in dynamics. I: Flows, (1969), Princeton Univ. Press Zbl0197.10702MR282379
- P. Pettersson, WKB expansions for systems of Schrödinger operators with crossing eigenvalues, Asymptotic Anal. 14 (1997), 1-48 Zbl0885.35104MR1437193
- J. Vanneste, Mode Conversion for Rossby Waves over Topography, J. Phys. Oceanogr. 31 (2001), 1922-1925
- J. von Neumann, E. Wigner, Über das Verhalten von Eigenwerten bei adiabatischen Prozessen, Phys. Zeit. 30 (1929), 467-470 Zbl55.0520.05
- A. Weinstein, Symplectic manifolds and their Lagrangian submanifolds., Adv. Math. 6 (1971), 329-346 Zbl0213.48203MR286137
- C. Zener, Non-adiabatic crossing of energy levels, Proc. Roy. Soc. Lond. 137 (1932), 696-702 Zbl0005.18605
- L. Landau, Collected papers, (1965), Pergamon Press
Citations in EuDML Documents
top- Yves Colin de Verdière, The level crossing problem in semi-classical analysis. II. The Hermitian case
- Clotilde Fermanian Kammerer, Caroline Lasser, An algorithm for quantum propagation through electron level crossings.
- Clotilde Fermanian Kammerer, Propagation des mesures de Wigner à travers un croisement de codimension 1 dégénéré
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.