The level crossing problem in semi-classical analysis I. The symmetric case

Yves Colin de Verdière[1]

  • [1] Université Joseph Fourier, Institut Fourier (unité mixte CNRS-UJF 5582), BP 74, 38402 Saint-Martin d'Hères Cedex (France)

Annales de l’institut Fourier (2003)

  • Volume: 53, Issue: 4, page 1023-1054
  • ISSN: 0373-0956

Abstract

top
We describe a microlocal normal form for a symmetric system of pseudo-differential equations whose principal symbol is a real symmetric matrix with a generic crossing of eigenvalues. We use it in order to give a precise description of the microlocal solutions.

How to cite

top

Colin de Verdière, Yves. "The level crossing problem in semi-classical analysis I. The symmetric case." Annales de l’institut Fourier 53.4 (2003): 1023-1054. <http://eudml.org/doc/116061>.

@article{ColindeVerdière2003,
abstract = {We describe a microlocal normal form for a symmetric system of pseudo-differential equations whose principal symbol is a real symmetric matrix with a generic crossing of eigenvalues. We use it in order to give a precise description of the microlocal solutions.},
affiliation = {Université Joseph Fourier, Institut Fourier (unité mixte CNRS-UJF 5582), BP 74, 38402 Saint-Martin d'Hères Cedex (France)},
author = {Colin de Verdière, Yves},
journal = {Annales de l’institut Fourier},
keywords = {mode conversion; polarization; Born-Oppenheimer approximation; Maxwell equations; eigenvalue crossing; pseudo-differential systems; semi-classical analysis; lagrangian manifold; propagation of singularities; coherent states; symplectic spinors},
language = {eng},
number = {4},
pages = {1023-1054},
publisher = {Association des Annales de l'Institut Fourier},
title = {The level crossing problem in semi-classical analysis I. The symmetric case},
url = {http://eudml.org/doc/116061},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Colin de Verdière, Yves
TI - The level crossing problem in semi-classical analysis I. The symmetric case
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 4
SP - 1023
EP - 1054
AB - We describe a microlocal normal form for a symmetric system of pseudo-differential equations whose principal symbol is a real symmetric matrix with a generic crossing of eigenvalues. We use it in order to give a precise description of the microlocal solutions.
LA - eng
KW - mode conversion; polarization; Born-Oppenheimer approximation; Maxwell equations; eigenvalue crossing; pseudo-differential systems; semi-classical analysis; lagrangian manifold; propagation of singularities; coherent states; symplectic spinors
UR - http://eudml.org/doc/116061
ER -

References

top
  1. M. Abramowitz, I. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, (1970), Dover Publication Inc., New York Zbl0171.38503MR1225604
  2. V. Arnold, Singularities of Caustics and Wave Fronts, (1990), Kluwer Zbl0734.53001MR1151185
  3. V. Arnold, On the interior scattering of waves, defined by hyperbolic variational principles, J. Geom. Phys. 5 (1988), 305-315 Zbl0699.35199MR1048504
  4. J.E. Avron, A. Gordon, Born-Oppenheimer wave function near level crossing, Phys. Rev. A 62-06254 (2000) 
  5. M. Born, R. Oppenheimer, Zür Quantentheorie der Molekeln, Annal. Phys. 84 (1927), 457-484 Zbl53.0845.04
  6. L. Boutet de Monvel, V. Guillemin, The Spectral Theory of Toeplitz Operators, (1981), Princeton Univ. Press Zbl0469.47021MR620794
  7. P. Braam, H. Duistermaat, Normal forms of real symmetric systems with multiplicity, Indag. Math., N.S. 4 (1993), 407-421 Zbl0802.35176MR1252985
  8. Y. Colin de Verdière, Singular Lagrangian manifolds and semi-classical analysis, Duke Math. J. 116 (2003), 263-298 Zbl1074.53066MR1953293
  9. Y. Colin de Verdière, Spectres de Graphes, (1998), Soc. Math. France Zbl0913.05071MR1652692
  10. Y. Colin de Verdière, The level crossing problem in semi-classical analysis. II. The Hermitian case, (2003) Zbl1113.35151
  11. Y. Colin de Verdière, M. Lombardi, J. Pollet, The microlocal Landau-Zener formula, Ann. IHP (Phys. théorique) 71 (1999), 95-127 Zbl0986.81027MR1704655
  12. Y. Colin de Verdière, B. Parisse, Équilibre instable en régime semi-classique. I. Concentration microlocale, Commun. in PDE 19 (1994), 1535-1563 Zbl0819.35116MR1294470
  13. Y. Colin de Verdière, J. Vey, Le lemme de Morse isochore, Topology 18 (1979), 283-293 Zbl0441.58003MR551010
  14. J.-M. Combes, On the Born-Oppenheimer approximation, International Symposium on Mathematical Problems in Theoretical Physics, Kyoto Univ., Kyoto 39 (1975), 467-471 Zbl0372.47026
  15. J.-M. Combes, R. Seiler, Spectral properties of atomic and molecular systems, Quantum dynamics of molecules (1979), 435-482, Univ. Cambridge 
  16. M. Combescure, D. Robert, Semiclassical spreading of quantum wave packets and applications near unstable fixed points of the classical flow, Asymptotic Anal. 14 (1997), 377-404 Zbl0894.35026MR1461126
  17. P. Exner, A. Joye, Avoided Crossings in Mesoscopic Systems: Electron Propagation on a Non-uniform Magnetic Cylinder, J. Math. Phys. 42 (2001), 4707-4738 Zbl1017.81050MR1855092
  18. C. Emmrich, A. Weinstein, Geometry of the transport Equation in Multicomponent WKB Approximations, Commun. Math. Phys. 176 (1996), 701-711 Zbl0848.34039MR1376438
  19. F. Faure, B. Zhilinskii, Topological Chern Indices in Molecular Spectra, Phys. Rev. Letters 85 (2000), 960-963 
  20. F. Faure, B. Zhilinskii, Topological properties of the Born-Oppenheimer approximation and implications for the exact spectrum, Lett. Math. Phys. 55 (2001), 219-239 Zbl0981.81028MR1843445
  21. C. Fermanian-Kammerer, A non-commutative Landau-Zener formula, (2002) Zbl1050.35093
  22. C. Fermanian-Kammerer, Une formule de Landau-Zener pour un croisement de codimension 2, Séminaire Équations aux dérivées partielles, École Polytechnique exposé XXI, 9/04 (2002) 
  23. C. Fermanian-Kammerer, C. Lasser, Wigner measures and codimension two crossings, (2002) Zbl1061.81078MR1952198
  24. W. Flynn, R. Littlejohn, Normal forms for linear mode conversion and Landau-Zener transitions in one dimension, Ann. Physics 234 (1994), 334-403 MR1289934
  25. W. Flynn, R. Littlejohn, Semi-classical theory of spin-orbit coupling, Phys. Rev. A 45 (1992), 7697-7717 MR1167156
  26. G. Folland, Harmonic Analysis on Phase Space, (1989), Princeton Univ. Press Zbl0682.43001MR983366
  27. P. Gérard, C. Fermanian-Kammerer, Mesures semi-classiques et croisement de modes, Bull. Soc. Math. France 130 (2002), 123-168 Zbl0996.35004MR1906196
  28. P. Gérard, C. Fermanian-Kammerer, A Landau-Zener formula for non-degenerated involutive codimension 3 crossings, (sept. 2002) Zbl1049.81029MR2007256
  29. V. Guillemin, Symplectic spinors and PDE, Géométrie Symplectique et Physique mathématique (Colloque CNRS Aix-en-Provence) (1974) 
  30. G. Hagedorn, Molecular Propagation through Electron Energy Level Crossings, Memoirs of the AMS 536 (1994) Zbl0833.92025MR1234882
  31. G. Hagedorn, Higher Order Corrections to the Time-Dependent Born-Oppenheimer Approximation. I: Smooth Potentials, Ann. Math. 124 (1986), 571-590 Zbl0619.35094MR866709
  32. G. Hagedorn, Raising and lowering operators for semiclassical wave packets, Ann. Phys. 269 (1998), 77-104 Zbl0929.34067MR1650826
  33. G. Hagedorn, A. Joye, Landau-Zener Transitions through small Electronic Eigenvalues Gaps in the Born-Oppenheimer Approximation, Ann. IHP (Phys. théorique) 68 (1998), 85-134 Zbl0915.35090MR1618922
  34. G. Hagedorn, A. Joye, Molecular Propapagation through small avoided Crossings of Electron Energy Levels, Rev. Math. Phys. 11 (1999), 41-101 Zbl0965.81138MR1668071
  35. R. Halberg, Localized coupling between surface- and bottom-intensified flow over topography, J. Phys. Oceanogr. 27 (1997), 977-999 
  36. P. Holm, Generic elastic Media, Physica Scripta 44 (1992), 122-127 
  37. A. Joye, Proof of the Landau-Zener Formula, Asymptotic Analysis 9 (1994), 209-258 Zbl0814.35109MR1295294
  38. N. Kaidi, M. Rouleux, Forme normale d'un hamiltonien à deux niveaux près d'un point de branchement (limite semi-classique), C. R. Acad. Sci. Paris, Sér. I 317 (1993), 359-364 Zbl0797.58083MR1235449
  39. M. Karasev, Y. Vorobjev, Integral representations over isotropic submanifolds and equations of zero curvature, Adv. Math. 135 (1998), 220-286 Zbl0926.53030MR1620834
  40. M. Klein, A. Martinez, R. Seiler, X. Wang, On the Born-Oppenheimer Approximation of Wave Operators in Molecular Scattering Theory, Commun. Math. Phys. 143 (1992), 607-639 Zbl0754.35099MR1145603
  41. M. Kline, I. Kay, Electromagnetic theory and geometrical optics., (1965), Interscience Publishers Zbl0123.23602MR180094
  42. L. Landau, Zur Theorie der Energieübertragung. II., Z. Phys. Sowjet. 2 (1932), 46-51 Zbl0005.27801
  43. L. Landau, E. Lifchitz, Mécanique quantique (théorie non relativiste), (1967), Mir, Moscou Zbl0148.43806
  44. A. Melin, J. Sjöstrand, Fourier integral operators with complex valued phase functions, Lecture Notes in Math. (1975) Zbl0306.42007MR431289
  45. R. Melrose, G. Uhlmann, Microlocal structure of involutive conical refraction, Duke Math. J. 46 (1979), 571-582 Zbl0422.58026MR544247
  46. J. Moser, On the generalization of a theorem of Liapounoff, Comm. Pure Appl. Math. 11 (1958), 257-271 Zbl0082.08003MR96021
  47. E. Nelson, Topics in dynamics. I: Flows, (1969), Princeton Univ. Press Zbl0197.10702MR282379
  48. P. Pettersson, WKB expansions for systems of Schrödinger operators with crossing eigenvalues, Asymptotic Anal. 14 (1997), 1-48 Zbl0885.35104MR1437193
  49. J. Vanneste, Mode Conversion for Rossby Waves over Topography, J. Phys. Oceanogr. 31 (2001), 1922-1925 
  50. J. von Neumann, E. Wigner, Über das Verhalten von Eigenwerten bei adiabatischen Prozessen, Phys. Zeit. 30 (1929), 467-470 Zbl55.0520.05
  51. A. Weinstein, Symplectic manifolds and their Lagrangian submanifolds., Adv. Math. 6 (1971), 329-346 Zbl0213.48203MR286137
  52. C. Zener, Non-adiabatic crossing of energy levels, Proc. Roy. Soc. Lond. 137 (1932), 696-702 Zbl0005.18605
  53. L. Landau, Collected papers, (1965), Pergamon Press 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.