Displaying similar documents to “Schwarz-type lemmas for solutions of ¯ -inequalities and complete hyperbolicity of almost complex manifolds”

Levi-flat filling of real two-spheres in symplectic manifolds (I)

Hervé Gaussier, Alexandre Sukhov (2011)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

Let ( M , J , ω ) be a manifold with an almost complex structure J tamed by a symplectic form ω . We suppose that M has the complex dimension two, is Levi-convex and with bounded geometry. We prove that a real two-sphere with two elliptic points, embedded into the boundary of M can be foliated by the boundaries of pseudoholomorphic discs.

Holomorphic submersions from Stein manifolds

Franc Forstnerič (2004)

Annales de l’institut Fourier

Similarity:

We establish the homotopy classification of holomorphic submersions from Stein manifolds to Complex manifolds satisfying an analytic property introduced in the paper. The result is a holomorphic analogue of the Gromov--Phillips theorem on smooth submersions.

On holomorphic maps into compact non-Kähler manifolds

Masahide Kato, Noboru Okada (2004)

Annales de l’institut Fourier

Similarity:

We study the extension problem of holomorphic maps σ : H X of a Hartogs domain H with values in a complex manifold X . For compact Kähler manifolds as well as various non-Kähler manifolds, the maximal domain Ω σ of extension for σ over Δ is contained in a subdomain of Δ . For such manifolds, we define, in this paper, an invariant Hex n ( X ) using the Hausdorff dimensions of the singular sets of σ ’s and study its properties to deduce informations on the complex structure of X .

Extending holomorphic mappings from subvarieties in Stein manifolds

Franc Forstneric (2005)

Annales de l’institut Fourier

Similarity:

Suppose that Y is a complex manifold such that any holomorphic map from a compact convex set in a Euclidean space n to Y is a uniform limit of entire maps n Y . We prove that a holomorphic map X 0 Y from a closed complex subvariety X 0 in a Stein manifold X admits a holomorphic extension X Y provided that it admits a continuous extension. We then establish the equivalence of four Oka-type properties of a complex manifold.

On envelopes of holomorphy of domains covered by Levi-flat hats and the reflection principle

Joël Merker (2002)

Annales de l’institut Fourier

Similarity:

In the present paper, we associate the techniques of the Lewy-Pinchuk reflection principle with the Behnke-Sommer continuity principle. Extending a so-called to a parameterized congruence of Segre varieties, we are led to studying the envelope of holomorphy of a certain domain covered by a smooth Levi-flat “hat”. In our main theorem, we show that every 𝒞 -smooth CR diffeomorphism h : M M ' between two globally minimal real analytic hypersurfaces in n ( n 2 ) is real analytic at every point of M ...