Euler system for Galois deformations
- [1] Osaka University, Department of Mathematics, 1-16 Machikaneyama, Toyonaka, Osaka 560-0043 (Japon)
Annales de l’institut Fourier (2005)
- Volume: 55, Issue: 1, page 113-146
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topOchiai, Tadashi. "Euler system for Galois deformations." Annales de l’institut Fourier 55.1 (2005): 113-146. <http://eudml.org/doc/116180>.
@article{Ochiai2005,
abstract = {In this paper, we develop the Euler system theory for Galois deformations. By applying
this theory to the Beilinson-Kato Euler system for Hida’s nearly ordinary modular
deformations, we prove one of the inequalities predicted by the two-variable Iwasawa main
conjecture. Our method of the proof of the Euler system theory is based on non-arithmetic
specializations. This gives a new simplified proof of the inequality between the
characteristic ideal of the Selmer group of a Galois deformation and the ideal associated
to a Euler system even in the case of $\mathbb \{Z\}^\{d_p\}$-extensions already treated by Kato,
Perrin-Riou, Rubin.},
affiliation = {Osaka University, Department of Mathematics, 1-16 Machikaneyama, Toyonaka, Osaka 560-0043 (Japon)},
author = {Ochiai, Tadashi},
journal = {Annales de l’institut Fourier},
keywords = {Euler system; Hida theory; Iwasawa Main conjecture},
language = {eng},
number = {1},
pages = {113-146},
publisher = {Association des Annales de l'Institut Fourier},
title = {Euler system for Galois deformations},
url = {http://eudml.org/doc/116180},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Ochiai, Tadashi
TI - Euler system for Galois deformations
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 1
SP - 113
EP - 146
AB - In this paper, we develop the Euler system theory for Galois deformations. By applying
this theory to the Beilinson-Kato Euler system for Hida’s nearly ordinary modular
deformations, we prove one of the inequalities predicted by the two-variable Iwasawa main
conjecture. Our method of the proof of the Euler system theory is based on non-arithmetic
specializations. This gives a new simplified proof of the inequality between the
characteristic ideal of the Selmer group of a Galois deformation and the ideal associated
to a Euler system even in the case of $\mathbb {Z}^{d_p}$-extensions already treated by Kato,
Perrin-Riou, Rubin.
LA - eng
KW - Euler system; Hida theory; Iwasawa Main conjecture
UR - http://eudml.org/doc/116180
ER -
References
top- S. Bloch, K. Kato, -functions and Tamagawa numbers of motives, in The Grothendieck Festschrift I, Progress in Math. 86 (1990), 333-400 Zbl0768.14001MR1086888
- N. Bourbaki, Eléments de mathématique, Algèbre commutative, Chapitre 5--7, (1985) Zbl0547.13002MR722608
- J.M. Fontaine (éd.), Périodes -adiques, Séminaire de Bures (1988) 223 (1994)
- P. Deligne, Formes modulaires et représentations -adiques, 179 (1969), Springer Verlag Zbl0206.49901
- P. Deligne, Valeurs des fonctions et périodes d’intégrales, XXXIII, Part 2 (1979), 247-289, Amer. Math. Soc. Zbl0449.10022
- M. Flach, A generalisation of Cassels-Tate pairing, J. reine angew. Math. 412 (1990), 113-127 Zbl0711.14001MR1079004
- R. Greenberg, Iwasawa theory for -adic representations, Advanced studies in Pure Math. 17 (1987), 97-137 Zbl0739.11045MR1097613
- R. Greenberg, Iwasawa theory for -adic deformations of motives, Proceedings of Symposia in Pure Math. 55 (1994), 193-223 Zbl0819.11046MR1265554
- R. Greenberg, G. Stevens, -adic -functions and -adic periods of modular forms, Invent. Math. 111 (1993), 407-447 Zbl0778.11034MR1198816
- H. Hida, Galois representations into attached to ordinary cusp forms, Invent. Math. 85 (1986), 545-613 Zbl0612.10021MR848685
- H. Hida, Elementary theory of -functions and Eisenstein series, 26 (1993), Cambridge University Press Zbl0942.11024MR1216135
- K. Kato, Lectures on the approach to Iwasawa theory for Hasse-Weil -functions via , I, 1553 (1993), 50-163 Zbl0815.11051
- K. Kato, Series of lectures on Iwasawa main conjectures for modular elliptic curves, (1998)
- K. Kato, -adic Hodge theory and values of zeta functions of modular forms Zbl1142.11336MR2104361
- K. Kato, Euler systems, Iwasawa theory, and Selmer groups, Kodai Math. J. 22 (1999), 313-372 Zbl0993.11033MR1727298
- K. Kitagawa, On standard -adic -functions of families of elliptic cusp forms, in -adic monodromy and the Birch and Swinnerton-Dyer conjecture, p.81-110, 165 (1994), Amer. Math. Soc. Zbl0841.11028MR1279604
- H. Matsumura, Commutative ring theory, 8 (1986), Cambridge University Press Zbl0603.13001MR879273
- B. Mazur, K. Rubin, Kolyvagin systems, (2001) Zbl1055.11041MR2031496
- B. Mazur, J. Tilouine, Représentations galoisiennes, différentielles de Kähler et ``conjectures principales", Inst. Hautes Études Sci. Publ. Math. 71 (1990), 65-103 Zbl0744.11053MR1079644
- B. Mazur, A. Wiles, Class fields of abelian extensions of , Invent. Math. 76 (1984), 179-330 Zbl0545.12005MR742853
- B. Mazur, A. Wiles, On -adic analytic families of Galois representations, Compos. Math. 59 (1986), 231-264 Zbl0654.12008MR860140
- J.S. Milne, Arithmetic duality theorems,, (1986), Academic Press Zbl1127.14001MR881804
- J. Neukirch, A. Schmidt, K. Wingberg, Cohomology of number fields, 323 (2000), Springer-Verlag, Berlin Zbl0948.11001MR1737196
- T. Ochiai, Control theorem for Greenberg's Selmer groups for Galois deformations, J. Number Theory 88 (2001), 59-85 Zbl1090.11034MR1825991
- T. Ochiai, A generalization of the Coleman map for Hida deformations, Amer. J. Math. 125 (2003), 849-892 Zbl1057.11048MR1993743
- T. Ochiai, On the two-variable Iwasawa Main conjecture for Hida deformations Zbl1112.11051
- B. Perrin-Riou, Systèmes d’Euler -adiques et théorie d’Iwasawa, Ann. Inst. Fourier 48 (1998), 1231-1307 Zbl0930.11078MR1662231
- K. Rubin, The ``main conjectures" of Iwasawa theory for imaginary quadratic fields, Invent. Math. 103 (1991), 25-68 Zbl0737.11030MR1079839
- K. Rubin, Euler systems, 147 (2000) Zbl0977.11001MR1749177
- J.-P. Serre, Cohomologie galoisienne, 5th ed., 5 (1994), Springer-Verlag Zbl0812.12002
- J. Tate, Relations between and Galois cohomology, Invent. Math. 36 (1976), 257-274 Zbl0359.12011MR429837
- A. Wiles, On -adic representations associated to modular forms, Invent. Math. 94 (1988), 529-573 Zbl0664.10013MR969243
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.