Représentations galoisiennes, différentielles de Kähler et «conjectures principales»
Publications Mathématiques de l'IHÉS (1990)
- Volume: 71, page 65-103
- ISSN: 0073-8301
Access Full Article
topHow to cite
topMazur, Barry, and Tilouine, Jacques. "Représentations galoisiennes, différentielles de Kähler et «conjectures principales»." Publications Mathématiques de l'IHÉS 71 (1990): 65-103. <http://eudml.org/doc/104069>.
@article{Mazur1990,
author = {Mazur, Barry, Tilouine, Jacques},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {Iwasawa theory; main conjecture; deformation of Galois representations; -adic -function},
language = {fre},
pages = {65-103},
publisher = {Institut des Hautes Études Scientifiques},
title = {Représentations galoisiennes, différentielles de Kähler et «conjectures principales»},
url = {http://eudml.org/doc/104069},
volume = {71},
year = {1990},
}
TY - JOUR
AU - Mazur, Barry
AU - Tilouine, Jacques
TI - Représentations galoisiennes, différentielles de Kähler et «conjectures principales»
JO - Publications Mathématiques de l'IHÉS
PY - 1990
PB - Institut des Hautes Études Scientifiques
VL - 71
SP - 65
EP - 103
LA - fre
KW - Iwasawa theory; main conjecture; deformation of Galois representations; -adic -function
UR - http://eudml.org/doc/104069
ER -
References
top- [1] BOURBAKI N., Algèbre Commutative, chapitre 7 : Diviseurs, Paris, Hermann, 1965. Zbl0141.03501
- [2] CARAYOL H., Sur les représentations l-adiques attachées aux formes modulaires de Hilbert, C.R. Acad. Sc. Paris, série I, 296 (1985), 629-632. Zbl0537.10018MR85e:11039
- [3] COATES J., SCHMIDT K., Iwasawa theory for the symmetric square of an elliptic curve, J. reine angew. Math., 375 (1987), 104-156. Zbl0609.14013MR88i:11077
- [4] GILLARD R., Fonctions L p-adiques des corps quadratiques imaginaires et de leurs extensions abéliennes, J. reine angew. Math., 358 (1985), 76-91. Zbl0551.12011MR87a:11106
- [5] GREENBERG R., On the conjecture of Birch and Swinnerton-Dyer, Inv. Math., 72 (1983), 241-265. Zbl0546.14015MR85c:11052
- [6] GREENBERG R., Iwasawa theory for p-adic representations, Advanced Studies in Pure Mathematics, 17 (1989), 97-137. Zbl0739.11045MR92c:11116
- [7] HIDA H., Iwasawa modules attached to congruences of cusp forms, Ann. Scient. Ec. Norm. Sup., 4e série, 19 (1986), 231-273. Zbl0607.10022MR88i:11023
- [8] HIDA H., Galois representations into GL2(Zp[[X]]) attached to ordinary cusp forms, Inv. Math., 85 (1986), 545-577. Zbl0612.10021MR87k:11049
- [9] HIDA H., A p-adic measure attached to the zeta functions associated with two elliptic modular forms, I, Inv. Math., 79 (1985), 159-195. Zbl0573.10020MR86m:11097
- [10] HIDA H., Hecke algebras for GL1 and GL2, Sém. Th. N. Paris, 1985-1986, 131-163, Birkhäuser Verlag, 1986. Zbl0648.10020
- [11] KATZ N., p-adic interpolation of real analytic Eisenstein series, Ann. of Math., 104 (1976), 459-571. Zbl0354.14007MR58 #22071
- [12] KATZ N., MAZUR B., Arithmetic Moduli of Elliptic Curves, Ann. of Math. Studies, number 108, Princeton Univ. Press, 1985. Zbl0576.14026MR86i:11024
- [13] LANGLANDS R. P., Automorphic forms and l-adic representations, in Proc. Int. Summer School on Modular Functions of One Variable II, Antwerp, 1972, Lecture Notes in Math., 349, 361-500, Springer-Verlag, 1973. Zbl0279.14007
- [14] MAZUR B., Modular Curves and the Eisenstein Ideal, Publ. Math. I.H.E.S., 47 (1977), 33-186. Zbl0394.14008MR80c:14015
- [15] MAZUR B., WILES A., Class fields of abelian extensions of Q, Inv. Math., 76 (1984), 179-330. Zbl0545.12005MR85m:11069
- [16] MAZUR B., WILES A., On p-adic families of Galois representations, Comp. Math., 59 (1986), 231-264. Zbl0654.12008MR88e:11048
- [17] MAZUR B., Deforming Galois Representations, in Galois Groups over Q, 385-438, Springer-Verlag, 1989. Zbl0714.11076MR90k:11057
- [18] MAZUR B., RIBET K., Two-dimensional representations in the arithmetic of modular curves, à paraître dans Sém. Orsay, 1987-1988, Ed. G. Henniart, Astérisque. Zbl0780.14015
- [19] RUBIN K., The "main conjectures" in Iwasawa theory for imaginary quadratic fields, Preprint, Ohio State U., Columbus, Ohio, 1990. Zbl0737.11030
- [20] de SHALIT E., Iwasawa Theory of Elliptic Curves with Complex Multiplication, Persp. in Math., vol. 3, Academic Press, 1987. Zbl0674.12004MR89g:11046
- [21] SHIMURA G., Introduction to the Arithmetic Theory of Automorphic Functions, Iwanami Shoten and Princeton Univ. Press, 1972. Zbl0221.10029
- [22] TILOUINE J., Un sous-groupe p-divisible de la jacobienne de X1(Npr) comme module sur l'algèbre de Hecke, Bull. Soc. Math. Fr., 115 (1987), 329-360. Zbl0677.14006MR88m:11043
- [23] TILOUINE J., Kummer's Criterion over Λ and Hida's Congruence Module, Hokkaido University Technical Report Series in Mathematics, vol. 4, 1987.
- [24] TILOUINE J., Théorie d'Iwasawa classique et de l'algèbre de Hecke ordinaire, Comp. Math., 65 (1988), 265-320. Zbl0663.12008MR89f:11152
- [25] TILOUINE J., Une conséquence de la conjecture principale dans la théorie d'Iwasawa d'un corps quadratique imaginaire, C.R. Acad. Sci. Paris, série 1, 306 (1988), 217-221. Zbl0674.12002MR89g:11103
- [26] TILOUINE J., Sur la conjecture principale anticyclotomique, Duke Math. J., 59 (1989), 629-673. Zbl0707.11079MR91b:11118
- [27] WILES A., On p-adic representations over a totally real field, Ann. of Math., 123 (1986), 407-456. Zbl0613.12013MR87g:11142
- [28] YAGER R., p-adic measures on Galois groups, Inv. Math., 76 (1984), 331-343. Zbl0555.12006MR86b:11045
- [29] GELBART S., Automorphic Forms on Adele Groups, Ann. of Math. Studies, Princeton Univ. Press, 1975. Zbl0329.10018
- [30] WEIL A., On a certain type of characters of idèle-class group of an algebraic number-field, in uvres scientifiques, vol. 2, [1955c], 255-261, Springer-Verlag, 1980.
Citations in EuDML Documents
top- Eknath Ghate, Vinayak Vatsal, On the local behaviour of ordinary -adic representations
- P. Bayer, J. C. Lario, On Galois representations defined by torsion points of modular elliptic curves
- Trevor Arnold, Hida families, -adic heights, and derivatives
- H. Hida, J. Tilouine, Anti-cyclotomic Katz -adic -functions and congruence modules
- Tadashi Ochiai, Euler system for Galois deformations
- Haruzo Hida, On the search of genuine -adic modular -functions for . With a correction to: On -adic -functions of over totally real fields
- Pierre Colmez, La conjecture de Birch et Swinnerton-Dyer -adique
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.