Hida families, -adic heights, and derivatives
- [1] McMaster University Department of Mathematics & Statistics 1280 Main Street West Hamilton, ON L8S 4K1 (Canada)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 6, page 2275-2299
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topArnold, Trevor. "Hida families, $p$-adic heights, and derivatives." Annales de l’institut Fourier 60.6 (2010): 2275-2299. <http://eudml.org/doc/116333>.
@article{Arnold2010,
abstract = {This paper concerns the arithmetic of certain $p$-adic families of elliptic modular forms. We relate, using a formula of Rubin, some Iwasawa-theoretic aspects of the three items in the title of this paper. In particular, we examine several conjectures, three of which assert the non-triviality of an Euler system, a $p$-adic regulator, and the derivative of a $p$-adic $L$-function. We investigate sufficient conditions for the first conjecture to hold and show that, under additional assumptions, the first conjecture implies the equivalence of the last two.},
affiliation = {McMaster University Department of Mathematics & Statistics 1280 Main Street West Hamilton, ON L8S 4K1 (Canada)},
author = {Arnold, Trevor},
journal = {Annales de l’institut Fourier},
keywords = {Iwasawa theory; Hida family; $p$-adic height; $p$-adic $L$-function; -adic height; -adic -function; Euler system},
language = {eng},
number = {6},
pages = {2275-2299},
publisher = {Association des Annales de l’institut Fourier},
title = {Hida families, $p$-adic heights, and derivatives},
url = {http://eudml.org/doc/116333},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Arnold, Trevor
TI - Hida families, $p$-adic heights, and derivatives
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 6
SP - 2275
EP - 2299
AB - This paper concerns the arithmetic of certain $p$-adic families of elliptic modular forms. We relate, using a formula of Rubin, some Iwasawa-theoretic aspects of the three items in the title of this paper. In particular, we examine several conjectures, three of which assert the non-triviality of an Euler system, a $p$-adic regulator, and the derivative of a $p$-adic $L$-function. We investigate sufficient conditions for the first conjecture to hold and show that, under additional assumptions, the first conjecture implies the equivalence of the last two.
LA - eng
KW - Iwasawa theory; Hida family; $p$-adic height; $p$-adic $L$-function; -adic height; -adic -function; Euler system
UR - http://eudml.org/doc/116333
ER -
References
top- P. Deligne, Formes modulaires et représentations -adiques, Séminaire Bourbaki 1968/1969, exp. 355 179 (1971), 139-172, Springer, Berlin Zbl0206.49901
- R. Greenberg, Iwasawa theory for motives, -functions and arithmetic (Durham, 1989) 153 (1991), 211-233, Cambridge Univ. Press Zbl0727.11043MR1110394
- R. Greenberg, Elliptic curves and -adic deformations, Elliptic curves and related topics 4 (1994), 101-110, AMS Zbl0821.14021MR1260957
- R. Greenberg, On the structure of certain Galois cohomology groups, Doc. Math. (2006) Zbl1138.11048MR2290593
- H. Hida, Iwasawa modules attached to congruences of cusp forms, Ann. Sci. École Norm. Sup. (4) 19 (1986), 231-273 Zbl0607.10022MR868300
- K. Kato, -adic Hodge theory and values of zeta functions of modular forms, Astérisque (2004), 117-290 Zbl1142.11336MR2104361
- K. Kitagawa, On standard -adic -functions of families of elliptic cusp forms, -adic monodromy and the Birch and Swinnerton-Dyer conjecture 165 (1994), 81-110, AMS Zbl0841.11028MR1279604
- B. Mazur, J. Tilouine, Représentations galoisiennes, différentielles de Kähler et ‘conjectures principales’, Inst. Hautes Études Sci. Publ. Math. (1990), 65-103 Zbl0744.11053MR1079644
- J. Milne, Arithmetic duality theorems, 1 (1986), Academic Press Zbl0613.14019MR881804
- J. Nekovář, Selmer complexes, Astérisque (2006) Zbl1211.11120MR2333680
- T. Ochiai, A generalization of the Coleman map for Hida deformations, Amer. J. Math. 125 (2003), 849-892 Zbl1057.11048MR1993743
- T. Ochiai, Euler system for Galois deformation, Ann. Inst. Fourier (Grenoble) 55 (2005), 113-146 Zbl1112.11031MR2141691
- T. Ochiai, On the two-variable Iwasawa main conjecture, Compositio Math. 142 (2006), 1157-1200 Zbl1112.11051MR2264660
- B. Perrin-Riou, Théorie d’Iwasawa et hauteurs -adiques, Invent. Math. 109 (1992), 137-185 Zbl0781.14013MR1168369
- A. Plater, Height pairings in families of deformations, J. reine angew. Math. 486 (1997), 97-127 Zbl0872.14018MR1450752
- K. Rubin, Abelian varieties, -adic heights and derivatives, Algebra and number theory (1994), 247-266, Walter de Gruyter and Co. Zbl0829.11034MR1285370
- K. Rubin, Euler Systems, (2000), Princeton University Press Zbl0977.11001MR1749177
- A. Wiles, On -adic representations associated to modular forms, Invent. Math. 94 (1988), 529-573 Zbl0664.10013MR969243
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.