Trajectoires bornées d'une particule soumise à un champ magnétique symétrique linéaire

Françoise Truc

Annales de l'I.H.P. Physique théorique (1996)

  • Volume: 64, Issue: 2, page 127-154
  • ISSN: 0246-0211

How to cite

top

Truc, Françoise. "Trajectoires bornées d'une particule soumise à un champ magnétique symétrique linéaire." Annales de l'I.H.P. Physique théorique 64.2 (1996): 127-154. <http://eudml.org/doc/76710>.

@article{Truc1996,
author = {Truc, Françoise},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Lorentz equation; magnetic field; rotational symmetry; twist theorem},
language = {fre},
number = {2},
pages = {127-154},
publisher = {Gauthier-Villars},
title = {Trajectoires bornées d'une particule soumise à un champ magnétique symétrique linéaire},
url = {http://eudml.org/doc/76710},
volume = {64},
year = {1996},
}

TY - JOUR
AU - Truc, Françoise
TI - Trajectoires bornées d'une particule soumise à un champ magnétique symétrique linéaire
JO - Annales de l'I.H.P. Physique théorique
PY - 1996
PB - Gauthier-Villars
VL - 64
IS - 2
SP - 127
EP - 154
LA - fre
KW - Lorentz equation; magnetic field; rotational symmetry; twist theorem
UR - http://eudml.org/doc/76710
ER -

References

top
  1. [1] V.I. Arnold, Dynamical Systems, Springer Verlag, Encyclopaedia of Math. Sciences, Vol. 3, 1988. 
  2. [2] V.I. Arnold, Small denominators and problems of stability of motion in classical and celestial mechanics, Russ Math. Survey, Vol. 18, 6, 1963, p. 85-190. Zbl0135.42701MR170705
  3. [3] M. Braun, Particle motions in a magnetic Field, Journal of Diff. Equ., Vol. 8, 1970, p. 294-332. MR264906
  4. [4] M. Gardner, The adiabatic invariant of periodic classical systems, Phys. Rev., Vol. 115, 1959, p. 791-794. MR109003
  5. [5] M.R. Herman, Sur les courbes invariantes par les difféomorphismes de l'anneau, Astérisque, Paris, Vol. 1, 1983, p. 103-104. Zbl0532.58011MR499079
  6. [6] M. Kruskal, Asymptotic theory of Hamiltonian and other systems with all solutions nearly periodic, Journal of Mathematical Physics, Vol. 3, 1962, p. 806-829. Zbl0113.21201MR151001
  7. [7] P. Lochak and C. Meunier, Multiphase averaging for classical systems with applications to Adiabatic theorems, Applied Math. Sciences, Springer Verlag, Vol. 72, 1988. Zbl0668.34044MR959890
  8. [8] J. Moser, On invariant curbes of area preserving mappings of an annulus, Nachr Acad. Wiss. II Göttingen, Math. Phys. Klasse, 1962, p. 1-20. Zbl0107.29301MR147741
  9. [9] J. Moser, Stable and random motions in dynamical systems, Annals of Math studies, Princeton University Press, 1973. Zbl0271.70009MR442980
  10. [10] A.I. Neistadt, The separation of motions in systems with rapidly rotating phase, J. Appl. Math. Mech., Vol. 48, 2, 1984, p. 133-139. Zbl0571.70022MR802878
  11. [11] T.G. Northrop, The adiabatic motion of charged particles, WileyInterscience PublishersNew York, 1963. Zbl0119.43703MR172659
  12. [12] H. Weitzner, Motions of a charged particle in slowly varying electromagnetic Field, Comm. in pure and applied Math., Vol. 36, 1983, p. 695-704. Zbl0505.76128MR716203

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.