The local Jacquet-Langlands correspondence via Fourier analysis
- [1] UCLA Mathematics Department Box 951555 Los Angeles, CA 90095-1555, USA
Journal de Théorie des Nombres de Bordeaux (2010)
- Volume: 22, Issue: 2, page 483-512
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topWeinstein, Jared. "The local Jacquet-Langlands correspondence via Fourier analysis." Journal de Théorie des Nombres de Bordeaux 22.2 (2010): 483-512. <http://eudml.org/doc/116416>.
@article{Weinstein2010,
abstract = {Let $F$ be a locally compact non-Archimedean field, and let $B/F$ be a division algebra of dimension 4. The Jacquet-Langlands correspondence provides a bijection between smooth irreducible representations $\pi ^\{\prime\}$ of $B^\times $ of dimension $>1$ and irreducible cuspidal representations of $\operatorname\{GL\}_2(F)$. We present a new construction of this bijection in which the preservation of epsilon factors is automatic. This is done by constructing a family of pairs $(\mathcal\{L\},\rho )$, where $\mathcal\{L\}\subset M_2(F)\times B$ is an order and $\rho $ is a finite-dimensional representation of a certain subgroup of $\operatorname\{GL\}_2(F)\times B^\times $ containing $\mathcal\{L\}^\times $. Let $\pi \otimes \pi ^\{\prime\}$ be an irreducible representation of $\operatorname\{GL\}_2(F)\times B^\{\times \}$; we show that $\pi \otimes \pi ^\{\prime\}$ contains such a $\rho $ if and only if $\pi $ is cuspidal and corresponds to $\check\{\pi \}^\{\prime\}$ under Jacquet-Langlands, and also that every $\pi $ and $\pi ^\{\prime\}$ arises this way. The agreement of epsilon factors is reduced to a Fourier-analytic calculation on a finite ring quotient of $\mathcal\{L\}$.},
affiliation = {UCLA Mathematics Department Box 951555 Los Angeles, CA 90095-1555, USA},
author = {Weinstein, Jared},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {locally compact non-Archimedean field; division algebra of dimension 4},
language = {eng},
number = {2},
pages = {483-512},
publisher = {Université Bordeaux 1},
title = {The local Jacquet-Langlands correspondence via Fourier analysis},
url = {http://eudml.org/doc/116416},
volume = {22},
year = {2010},
}
TY - JOUR
AU - Weinstein, Jared
TI - The local Jacquet-Langlands correspondence via Fourier analysis
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2010
PB - Université Bordeaux 1
VL - 22
IS - 2
SP - 483
EP - 512
AB - Let $F$ be a locally compact non-Archimedean field, and let $B/F$ be a division algebra of dimension 4. The Jacquet-Langlands correspondence provides a bijection between smooth irreducible representations $\pi ^{\prime}$ of $B^\times $ of dimension $>1$ and irreducible cuspidal representations of $\operatorname{GL}_2(F)$. We present a new construction of this bijection in which the preservation of epsilon factors is automatic. This is done by constructing a family of pairs $(\mathcal{L},\rho )$, where $\mathcal{L}\subset M_2(F)\times B$ is an order and $\rho $ is a finite-dimensional representation of a certain subgroup of $\operatorname{GL}_2(F)\times B^\times $ containing $\mathcal{L}^\times $. Let $\pi \otimes \pi ^{\prime}$ be an irreducible representation of $\operatorname{GL}_2(F)\times B^{\times }$; we show that $\pi \otimes \pi ^{\prime}$ contains such a $\rho $ if and only if $\pi $ is cuspidal and corresponds to $\check{\pi }^{\prime}$ under Jacquet-Langlands, and also that every $\pi $ and $\pi ^{\prime}$ arises this way. The agreement of epsilon factors is reduced to a Fourier-analytic calculation on a finite ring quotient of $\mathcal{L}$.
LA - eng
KW - locally compact non-Archimedean field; division algebra of dimension 4
UR - http://eudml.org/doc/116416
ER -
References
top- Alexandru Ioan Badulescu, Correspondance de Jacquet-Langlands pour les corps locaux de caractéristique non nulle. Ann. Sci. École Norm. Sup. (4) 35 (2002), no. 5, 695–747. Zbl1092.11025MR1951441
- Colin J. Bushnell and Guy Henniart, Correspondance de Jacquet-Langlands explicite. II. Le cas de degré égal à la caractéristique résiduelle. Manuscripta Math. 102 (2000), no. 2, 211–225. Zbl1037.22031MR1771941
- —, Local tame lifting for . III. Explicit base change and Jacquet-Langlands correspondence. J. Reine Angew. Math. 580 (2005), 39–100. Zbl1074.11063MR2130587
- C. Bushnell and G. Henniart, The local langlands conjecture for . Springer-Verlag, 2006. Zbl1100.11041MR2234120
- Colin J. Bushnell and Philip C. Kutzko, The admissible dual of via compact open subgroups. Annals of Mathematics Studies, vol. 129, Princeton University Press, Princeton, NJ, 1993. Zbl0787.22016MR1204652
- I. Bouw and S. Wewers, Stable reduction of modular curves. Modular Curves and abelian varieties, Birkhauser, 2004. Zbl1147.11316MR2058639
- H. Carayol, Sur les représentations -adiques associées aux formes modulaires de Hilbert. Annales scientifiques de l’É.N.S. 19 (1986), no. 3, 409–468. Zbl0616.10025MR870690
- P. Deligne, D. Kazhdan, and M.-F. Vignéras, Représentations des algèbres centrales simples -adiques. Representations of reductive groups over a local field, Travaux en Cours, Hermann, Paris, 1984, pp. 33–117. Zbl0583.22009MR771672
- Paul Gérardin, Weil representations associated to finite fields. J. Algebra 46 (1977), no. 1, 54–101. Zbl0359.20008MR460477
- —, Cuspidal unramified series for central simple algebras over local fields. Automorphic forms, representations and -functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 157–169. Zbl0416.22019MR546594
- S. Gurevich and R. Hadani, The geometric Weil representation. Selecta Mathematica 13 (2007), no. 3, 465–481. Zbl1163.22004MR2383602
- S. Gurevich and R. Hadani., On the diagonalization of the discrete Fourier transform. Applied and Computational Harmonic Analysis (2008). Zbl1165.65089MR2526889
- Roger Godement and Hervé Jacquet, Zeta functions of simple algebras. Lecture Notes in Mathematics, Vol. 260, Springer-Verlag, Berlin, 1972. Zbl0244.12011MR342495
- Paul Gérardin and Wen-Ch’ing Winnie Li, Fourier transforms of representations of quaternions. J. Reine Angew. Math. 359 (1985), 121–173. Zbl0553.12008MR794802
- Guy Henniart, Caractérisation de la correspondance de Langlands locale par les facteurs de paires. Invent. Math. 113 (1993), no. 2, 339–350. Zbl0810.11069MR1228128
- —, Correspondance de Jacquet-Langlands explicite. I. Le cas modéré de degré premier. Séminaire de Théorie des Nombres, Paris, 1990–91, Progr. Math., vol. 108, Birkhäuser Boston, Boston, MA, 1993, pp. 85–114. Zbl0961.11018MR1263525
- Roger E. Howe, Tamely ramified supercuspidal representations of . Pacific J. Math. 73 (1977), no. 2, 437–460. Zbl0404.22019MR492087
- Hervé Jacquet and Robert Langlands, Automorphic forms on . Lecture Notes in Mathematics, vol. 114, Springer-Verlag, Berlin-New York, 1970. Zbl0236.12010MR401654
- Takeshi Kondo, On Gaussian sums attached to the general linear groups over finite fields. J. Math. Soc. Japan 15 (1963), 244–255. Zbl0135.08901MR161914
- George Lusztig, Representations of finite Chevalley groups. CBMS Regional Conference Series in Mathematics, vol. 39, American Mathematical Society, Providence, R.I., 1978, Expository lectures from the CBMS Regional Conference held at Madison, Wis., August 8–12, 1977. Zbl0418.20037MR518617
- I.G. Macdonald, Symmetric functions and Hall polynomials. Oxford University Press, 1973. Zbl0899.05068MR1354144
- Jonathan D. Rogawski, Representations of and division algebras over a -adic field. Duke Math. J. 50 (1983), no. 1, 161–196. Zbl0523.22015MR700135
- Andrew Snowden, The Jacquet-Langlands correspondence for . Ph. D. Thesis, 2009. MR2713369
- Teruyoshi Yoshida, On non-abelian Lubin-Tate theory via vanishing cycles. Adv. Stud. Pure Math. 58 (2010), 361–402. Zbl1257.11103MR2676163
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.