The local Jacquet-Langlands correspondence via Fourier analysis

Jared Weinstein[1]

  • [1] UCLA Mathematics Department Box 951555 Los Angeles, CA 90095-1555, USA

Journal de Théorie des Nombres de Bordeaux (2010)

  • Volume: 22, Issue: 2, page 483-512
  • ISSN: 1246-7405

Abstract

top
Let F be a locally compact non-Archimedean field, and let B / F be a division algebra of dimension 4. The Jacquet-Langlands correspondence provides a bijection between smooth irreducible representations π of B × of dimension > 1 and irreducible cuspidal representations of GL 2 ( F ) . We present a new construction of this bijection in which the preservation of epsilon factors is automatic. This is done by constructing a family of pairs ( , ρ ) , where M 2 ( F ) × B is an order and ρ is a finite-dimensional representation of a certain subgroup of GL 2 ( F ) × B × containing × . Let π π be an irreducible representation of GL 2 ( F ) × B × ; we show that π π contains such a ρ if and only if π is cuspidal and corresponds to π ˇ under Jacquet-Langlands, and also that every π and π arises this way. The agreement of epsilon factors is reduced to a Fourier-analytic calculation on a finite ring quotient of .

How to cite

top

Weinstein, Jared. "The local Jacquet-Langlands correspondence via Fourier analysis." Journal de Théorie des Nombres de Bordeaux 22.2 (2010): 483-512. <http://eudml.org/doc/116416>.

@article{Weinstein2010,
abstract = {Let $F$ be a locally compact non-Archimedean field, and let $B/F$ be a division algebra of dimension 4. The Jacquet-Langlands correspondence provides a bijection between smooth irreducible representations $\pi ^\{\prime\}$ of $B^\times $ of dimension $&gt;1$ and irreducible cuspidal representations of $\operatorname\{GL\}_2(F)$. We present a new construction of this bijection in which the preservation of epsilon factors is automatic. This is done by constructing a family of pairs $(\mathcal\{L\},\rho )$, where $\mathcal\{L\}\subset M_2(F)\times B$ is an order and $\rho $ is a finite-dimensional representation of a certain subgroup of $\operatorname\{GL\}_2(F)\times B^\times $ containing $\mathcal\{L\}^\times $. Let $\pi \otimes \pi ^\{\prime\}$ be an irreducible representation of $\operatorname\{GL\}_2(F)\times B^\{\times \}$; we show that $\pi \otimes \pi ^\{\prime\}$ contains such a $\rho $ if and only if $\pi $ is cuspidal and corresponds to $\check\{\pi \}^\{\prime\}$ under Jacquet-Langlands, and also that every $\pi $ and $\pi ^\{\prime\}$ arises this way. The agreement of epsilon factors is reduced to a Fourier-analytic calculation on a finite ring quotient of $\mathcal\{L\}$.},
affiliation = {UCLA Mathematics Department Box 951555 Los Angeles, CA 90095-1555, USA},
author = {Weinstein, Jared},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {locally compact non-Archimedean field; division algebra of dimension 4},
language = {eng},
number = {2},
pages = {483-512},
publisher = {Université Bordeaux 1},
title = {The local Jacquet-Langlands correspondence via Fourier analysis},
url = {http://eudml.org/doc/116416},
volume = {22},
year = {2010},
}

TY - JOUR
AU - Weinstein, Jared
TI - The local Jacquet-Langlands correspondence via Fourier analysis
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2010
PB - Université Bordeaux 1
VL - 22
IS - 2
SP - 483
EP - 512
AB - Let $F$ be a locally compact non-Archimedean field, and let $B/F$ be a division algebra of dimension 4. The Jacquet-Langlands correspondence provides a bijection between smooth irreducible representations $\pi ^{\prime}$ of $B^\times $ of dimension $&gt;1$ and irreducible cuspidal representations of $\operatorname{GL}_2(F)$. We present a new construction of this bijection in which the preservation of epsilon factors is automatic. This is done by constructing a family of pairs $(\mathcal{L},\rho )$, where $\mathcal{L}\subset M_2(F)\times B$ is an order and $\rho $ is a finite-dimensional representation of a certain subgroup of $\operatorname{GL}_2(F)\times B^\times $ containing $\mathcal{L}^\times $. Let $\pi \otimes \pi ^{\prime}$ be an irreducible representation of $\operatorname{GL}_2(F)\times B^{\times }$; we show that $\pi \otimes \pi ^{\prime}$ contains such a $\rho $ if and only if $\pi $ is cuspidal and corresponds to $\check{\pi }^{\prime}$ under Jacquet-Langlands, and also that every $\pi $ and $\pi ^{\prime}$ arises this way. The agreement of epsilon factors is reduced to a Fourier-analytic calculation on a finite ring quotient of $\mathcal{L}$.
LA - eng
KW - locally compact non-Archimedean field; division algebra of dimension 4
UR - http://eudml.org/doc/116416
ER -

References

top
  1. Alexandru Ioan Badulescu, Correspondance de Jacquet-Langlands pour les corps locaux de caractéristique non nulle. Ann. Sci. École Norm. Sup. (4) 35 (2002), no. 5, 695–747. Zbl1092.11025MR1951441
  2. Colin J. Bushnell and Guy Henniart, Correspondance de Jacquet-Langlands explicite. II. Le cas de degré égal à la caractéristique résiduelle. Manuscripta Math. 102 (2000), no. 2, 211–225. Zbl1037.22031MR1771941
  3. —, Local tame lifting for GL ( n ) . III. Explicit base change and Jacquet-Langlands correspondence. J. Reine Angew. Math. 580 (2005), 39–100. Zbl1074.11063MR2130587
  4. C. Bushnell and G. Henniart, The local langlands conjecture for GL ( 2 ) . Springer-Verlag, 2006. Zbl1100.11041MR2234120
  5. Colin J. Bushnell and Philip C. Kutzko, The admissible dual of GL ( N ) via compact open subgroups. Annals of Mathematics Studies, vol. 129, Princeton University Press, Princeton, NJ, 1993. Zbl0787.22016MR1204652
  6. I. Bouw and S. Wewers, Stable reduction of modular curves. Modular Curves and abelian varieties, Birkhauser, 2004. Zbl1147.11316MR2058639
  7. H. Carayol, Sur les représentations -adiques associées aux formes modulaires de Hilbert. Annales scientifiques de l’É.N.S. 19 (1986), no. 3, 409–468. Zbl0616.10025MR870690
  8. P. Deligne, D. Kazhdan, and M.-F. Vignéras, Représentations des algèbres centrales simples p -adiques. Representations of reductive groups over a local field, Travaux en Cours, Hermann, Paris, 1984, pp. 33–117. Zbl0583.22009MR771672
  9. Paul Gérardin, Weil representations associated to finite fields. J. Algebra 46 (1977), no. 1, 54–101. Zbl0359.20008MR460477
  10. —, Cuspidal unramified series for central simple algebras over local fields. Automorphic forms, representations and L -functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 157–169. Zbl0416.22019MR546594
  11. S. Gurevich and R. Hadani, The geometric Weil representation. Selecta Mathematica 13 (2007), no. 3, 465–481. Zbl1163.22004MR2383602
  12. S. Gurevich and R. Hadani., On the diagonalization of the discrete Fourier transform. Applied and Computational Harmonic Analysis (2008). Zbl1165.65089MR2526889
  13. Roger Godement and Hervé Jacquet, Zeta functions of simple algebras. Lecture Notes in Mathematics, Vol. 260, Springer-Verlag, Berlin, 1972. Zbl0244.12011MR342495
  14. Paul Gérardin and Wen-Ch’ing Winnie Li, Fourier transforms of representations of quaternions. J. Reine Angew. Math. 359 (1985), 121–173. Zbl0553.12008MR794802
  15. Guy Henniart, Caractérisation de la correspondance de Langlands locale par les facteurs ϵ de paires. Invent. Math. 113 (1993), no. 2, 339–350. Zbl0810.11069MR1228128
  16. —, Correspondance de Jacquet-Langlands explicite. I. Le cas modéré de degré premier. Séminaire de Théorie des Nombres, Paris, 1990–91, Progr. Math., vol. 108, Birkhäuser Boston, Boston, MA, 1993, pp. 85–114. Zbl0961.11018MR1263525
  17. Roger E. Howe, Tamely ramified supercuspidal representations of Gl n . Pacific J. Math. 73 (1977), no. 2, 437–460. Zbl0404.22019MR492087
  18. Hervé Jacquet and Robert Langlands, Automorphic forms on GL ( 2 ) . Lecture Notes in Mathematics, vol. 114, Springer-Verlag, Berlin-New York, 1970. Zbl0236.12010MR401654
  19. Takeshi Kondo, On Gaussian sums attached to the general linear groups over finite fields. J. Math. Soc. Japan 15 (1963), 244–255. Zbl0135.08901MR161914
  20. George Lusztig, Representations of finite Chevalley groups. CBMS Regional Conference Series in Mathematics, vol. 39, American Mathematical Society, Providence, R.I., 1978, Expository lectures from the CBMS Regional Conference held at Madison, Wis., August 8–12, 1977. Zbl0418.20037MR518617
  21. I.G. Macdonald, Symmetric functions and Hall polynomials. Oxford University Press, 1973. Zbl0899.05068MR1354144
  22. Jonathan D. Rogawski, Representations of GL ( n ) and division algebras over a p -adic field. Duke Math. J. 50 (1983), no. 1, 161–196. Zbl0523.22015MR700135
  23. Andrew Snowden, The Jacquet-Langlands correspondence for GL ( 2 ) . Ph. D. Thesis, 2009. MR2713369
  24. Teruyoshi Yoshida, On non-abelian Lubin-Tate theory via vanishing cycles. Adv. Stud. Pure Math. 58 (2010), 361–402. Zbl1257.11103MR2676163

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.