Mathematical modeling of antigenicity for HIV dynamics

François Dubois[1]; Hervé V.J. Le Meur[2]; Claude Reiss[3]

  • [1] Conservatoire National des Arts et Métiers, EA 3196, Paris, France ; univ Paris-Sud, Orsay cedex, F-91405.
  • [2] CNRS, Laboratoire de Mathématiques d’Orsay, Orsay cedex, F-91405; univ Paris-Sud, Orsay cedex, F-91405.
  • [3] Vigilent Technologies, 38160 Chevrières, France.

MathematicS In Action (2010)

  • Volume: 3, Issue: 1, page 1-35
  • ISSN: 2102-5754

Abstract

top
This contribution is devoted to a new model of HIV multiplication motivated by the patent of one of the authors. We take into account the antigenic diversity through what we define “antigenicity”, whether of the virus or of the adapted lymphocytes. We model the interaction of the immune system and the viral strains by two processes. On the one hand, the presence of a given viral quasi-species generates antigenically adapted lymphocytes. On the other hand, the lymphocytes kill only viruses for which they have been designed. We consider also the mutation and multiplication of the virus. An original infection term is derived.So as to compare our system of differential equations with well-known models, we study some of them and compare their predictions to ours in the reduced case of only one antigenicity. In this particular case, our model does not yield any major qualitative difference. We prove mathematically that, in this case, our model is biologically consistent (positive fields) and has a unique continuous solution for long time evolution. In conclusion, this model improves the ability to simulate more advanced phases of the disease.

How to cite

top

Dubois, François, Le Meur, Hervé V.J., and Reiss, Claude. "Mathematical modeling of antigenicity for HIV dynamics." MathematicS In Action 3.1 (2010): 1-35. <http://eudml.org/doc/116435>.

@article{Dubois2010,
abstract = {This contribution is devoted to a new model of HIV multiplication motivated by the patent of one of the authors. We take into account the antigenic diversity through what we define “antigenicity”, whether of the virus or of the adapted lymphocytes. We model the interaction of the immune system and the viral strains by two processes. On the one hand, the presence of a given viral quasi-species generates antigenically adapted lymphocytes. On the other hand, the lymphocytes kill only viruses for which they have been designed. We consider also the mutation and multiplication of the virus. An original infection term is derived.So as to compare our system of differential equations with well-known models, we study some of them and compare their predictions to ours in the reduced case of only one antigenicity. In this particular case, our model does not yield any major qualitative difference. We prove mathematically that, in this case, our model is biologically consistent (positive fields) and has a unique continuous solution for long time evolution. In conclusion, this model improves the ability to simulate more advanced phases of the disease.},
affiliation = {Conservatoire National des Arts et Métiers, EA 3196, Paris, France ; univ Paris-Sud, Orsay cedex, F-91405.; CNRS, Laboratoire de Mathématiques d’Orsay, Orsay cedex, F-91405; univ Paris-Sud, Orsay cedex, F-91405.; Vigilent Technologies, 38160 Chevrières, France.},
author = {Dubois, François, Le Meur, Hervé V.J., Reiss, Claude},
journal = {MathematicS In Action},
keywords = {HIV modeling; antigenic variation; mutation; immune response},
language = {eng},
number = {1},
pages = {1-35},
publisher = {Société de Mathématiques Appliquées et Industrielles},
title = {Mathematical modeling of antigenicity for HIV dynamics},
url = {http://eudml.org/doc/116435},
volume = {3},
year = {2010},
}

TY - JOUR
AU - Dubois, François
AU - Le Meur, Hervé V.J.
AU - Reiss, Claude
TI - Mathematical modeling of antigenicity for HIV dynamics
JO - MathematicS In Action
PY - 2010
PB - Société de Mathématiques Appliquées et Industrielles
VL - 3
IS - 1
SP - 1
EP - 35
AB - This contribution is devoted to a new model of HIV multiplication motivated by the patent of one of the authors. We take into account the antigenic diversity through what we define “antigenicity”, whether of the virus or of the adapted lymphocytes. We model the interaction of the immune system and the viral strains by two processes. On the one hand, the presence of a given viral quasi-species generates antigenically adapted lymphocytes. On the other hand, the lymphocytes kill only viruses for which they have been designed. We consider also the mutation and multiplication of the virus. An original infection term is derived.So as to compare our system of differential equations with well-known models, we study some of them and compare their predictions to ours in the reduced case of only one antigenicity. In this particular case, our model does not yield any major qualitative difference. We prove mathematically that, in this case, our model is biologically consistent (positive fields) and has a unique continuous solution for long time evolution. In conclusion, this model improves the ability to simulate more advanced phases of the disease.
LA - eng
KW - HIV modeling; antigenic variation; mutation; immune response
UR - http://eudml.org/doc/116435
ER -

References

top
  1. Christian L. Althaus, Rob J. De Boer, Dynamics of Immune Escape during HIV/SIV Infection, PLoS Comput. Biol. 4 (2008) MR2430280
  2. JP. Anderson, R. Daifuku, LA. Loeb, Viral error catastrophe by mutagenic nucleosides, Annu. Rev. Microbiol. 58 (2004), 183-205 
  3. VI. Arnold, Ordinary Differential Equations, (1978), The MIT Press., Massachusetts Zbl0296.34001MR508209
  4. K. Bebenek, J. Abbotts, SH. Wilson, TA. Kunkel, Error-prone polymerization by HIV-1 reverse transcriptase. Contribution of template-primer misalignment, miscoding, and termination probability to mutational hot spots., J. Biol. Chem. 268(14) (1993), 10324-34 
  5. CK. Biebricher, M. Eigen, The error threshold, Virus Res. 107 (1993), 117-127 
  6. D.M. Bortz, P. W. Nelson, Model Selection and Mixed-Effects Modeling of HIV Infection Dynamics., Bull. Math. Biol. 68 (2006), 2005-2025 Zbl1296.92123MR2293832
  7. AL. Brass, DM. Dykxhoorn, Y. Benita, N. Yan, A. Engelman, RJ. Xavier, J. Lieberman, Elledge SJ., Identification of host proteins required for HIV infection through a functional genomic screen., Science 319 (2008), 921-6 
  8. DS. Callaway, AS. Perelson, HIV-1 Infection and Low Steady State Viral Loads., Bull. Math. Biol. 64 (2002), 29-64 Zbl1334.92227
  9. RJ. De Boer, Understanding the Failure of CD8+ T-Cell Vaccination against Simian/Human Immunodeficiency Virus, J. Virol. 81 (2007), 2838-2848 
  10. RJ. De Boer, AS. Perelson, Target Cell Limited and Immune Control Models of HIV Infection: A Comparison, J. Theor. Biol. 190 (1998), 201-214 
  11. P. De Leenheer, HL. Smith, Virus dynamics: a global analysis., SIAM J. Appl. Math. 63 (2003), 1313-1327 Zbl1035.34045MR1989905
  12. K. Dern, H. Rübsamen-Waigmann, RE. Unger, Inhibition of HIV type 1 replication by simultaneous infection of peripheral blood lymphocytes with human immunodeficiency virus types 1 and 2., AIDS Res. Hum. Retroviruses 17 (2001), 295-309 
  13. V. Derrien, Fidelity and termination of polymerization by reverse transcriptases in vitro., (1998) 
  14. WC. Drosopoulos, LF. Rezende, MA. Wainberg, VR. Prasad, Virtues of being faithful: can we limit the genetic variation in human immunodeficiency virus?, J. Mol. Med. 76 (1998), 604-12 
  15. F. Dubois, HVJ. Le Meur, C. Reiss, Modélisation de la multiplication du virus HIV., (2007), d’Analyse NUMériqueCongrèsC., Praz-sur-Arly 
  16. D. Finzi, RF. Silliciano, Viral dynamics in HIV-1 infection., Cell 93 (1998), 665-71 
  17. H. Frid, P-E. Jabin, B. Perthame, Global stability of steady solutions for a model in virus dynamics., Math. Model. Numer. Anal. 37 (2003), 709-723 Zbl1065.92013MR2018439
  18. K. Fujii, JH. Hurley, EO. Freed, Beyond Tsg101: the role of Alix in ’ESCRTing’ HIV-1., Nat. Rev. Microbiol. 5 (2007), 912-6 
  19. J. Guedj, R. Thiebaut, D. Commenges, Practical Identifiability of HIV Dynamics Models., Bull. Math. Biol. 69 (2007), 2493-513 Zbl1245.92055MR2353843
  20. KS. Harris, W. Brabant, S. Styrchak, A. Gall, R. Daifuku, KP-1212/1461, a nucleoside designed for the treatment of HIV by viral mutagenesis., Antivir. Res 67 (2005), 1-9 
  21. P. Henrici, Applied and Computational Complex Analysis, (1974), John Wiley, New-York Zbl0313.30001MR372162
  22. AV. Herz, S. Bonhoeffer, RM. Anderson, RM. May, MA. Nowak, Viral dynamics in vivo: limitations on estimates of intracellular delay and virus decay., Proc. Natl. Acad. Sci. USA 93 (1996), 7247-7251 
  23. J. Ji, LA. Loeb, Fidelity of HIV-1 reverse transcriptase copying a hypervariable region of the HIV-1 env gene., Virology 199 (1994), 323-30 
  24. E. Kashkina, M. Anikin, F. Brueckner, RT. Pomerantz, WT. McAllister, P. Cramer, D. Temiakov, Template misalignment in multisubunit RNA polymerases and transcription fidelity., Mol. Cell. 24 (2006), 257-66 
  25. DL. Kothe, Y. Li, JM. Decker, F. Bibollet-Ruche, KP. Zammit, MG. Salazar, Y. Chen, Z. Weng, EA. Weaver, F. Gao, BF. Haynes, GM. Shaw, BT. Korber, BH. Hahn, Ancestral and consensus envelope immunogens for HIV-1 subtype C., Virology 352 (2006), 438-49 
  26. S. Mueller, D. Papamichail, JR. Coleman, S. Skiena, E. Wimmer, Reduction of the rate of poliovirus protein synthesis through large-scale codon deoptimization causes attenuation of viral virulence by lowering specific infectivity., J. Virol. 80 (2006), 9687-96 
  27. E. Murakami, A. Basavapathruni, WD. Bradley, KS. Anderson, Mechanism of action of a novel viral mutagenic covert nucleotide: molecular interaction with HIV-1 reverse transcriptase and host cell DNA polymerases., Antivir. Res. 67 (2005), 10-17 
  28. PW. Nelson, JE. Mittler, AS. Perelson, Effect of drug efficacy and the eclipse phase of the viral life cycle on estimates of HIV viral dynamic parameters., J. Acquir. Immune Defic. Syndr. 26 (2001), 405-412 
  29. MA Nowak, Bangham. CRM, Population dynamics of immune responses to persistent viruses., Science 272 (1996), 74-79 
  30. MA. Nowak, RM. May, Virus dynamics. Mathematical Principles of Immunology and Virology, (2000), Oxford University Press Zbl1101.92028MR2009143
  31. DH. Pastore, JP. Zubelli, On the dynamics of certain models describing the HIV infection., Dynamics and Games in Science, in honour of Mauricio Peixoto and David Rand (2010), Alberto Adrego PintoMauricio PeixotoM. P. 
  32. AS. Perelson, Modelling viral and immune system dynamics, Nature Rev. Immunol. 2 (2002), 28-36 
  33. AS. Perelson, P. Nelson, Mathematical analysis of HIV-1 dynamics in vivo., SIAM Review 41 (1999), 3-44 Zbl1078.92502MR1669741
  34. AS. Perelson, AU. Neumann, M. Markowitz, JM. Leonard, DD. Ho, HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time., Science 271 (1996), 1582-6 
  35. J. Petravic, L. Loh, SJ. Kent, MP. Davenport, CD4+ Target cell availability determines the dynamics of immune escape and reversion in vivo., J. Virol. 82 (2008), 4091-101 
  36. M. Recher, KS. Lang, A. Navarini, L. Hunziker, PA. Lang, K. Fink, S. Freigang, P. Georgiev, L. Hangartner, R. Zellweger, A. Bergthaler, AN. Hegazy, B. Eschli, A. Theocharides, LT. Jeker, D. Merkler, B. Odermatt, M. Hersberger, H. Hengartner, RM. Zinkernagel, Extralymphatic virus sanctuaries as a consequence of potent T-cell activation., Nat. Med. 13 (2007), 1316-23 
  37. N. Sachsenberg, AS. Perelson, S. Yerly, GA. Schockmel, D. Leduc, B. Hirschel, L. Perrin, Turnover of CD4 + and CD8 + lymphocytes in HIV-1 infection as measured by Ki-67 antigen, J. Exp. Medecine 187 (1998), 1295-1303 
  38. A. Samson, M. Lavielle, F. Mentré, The SAEM algorithm for group comparison tests in longitudinal data analysis based on non-linear mixed-effects model., Stat Med. 26 (2007), 4860-75 MR2405484
  39. SJ. Snedecor, Comparison of three kinetic models of HIV-1 implications for optimization of treatment., J. Theor. Biol. 221 (2003), 519-541 MR2043096
  40. JA. Thomas, DE. Ott, RJ. Gorelick, Efficiency of human immunodeficiency virus type 1 postentry infection processes: evidence against disproportionate numbers of defective virions., J. Virol. 81 (2007), 4367-70 
  41. HC. Tuckwell, E. Le Corfec, A stochastic model for early HIV-1 population dynamics., J. Theor. Biol. 195 (1998), 451-63 
  42. L. Wang, M.Y. Li, Mathematical analysis of the global dynamics of a model for HIV infection of CD 4 + T cells., Math. Biosci. 200 (2006), 44-57 Zbl1086.92035MR2211927
  43. D. Warrilow, L. Meredith, A. Davis, C. Burrell, P. Li, D. Harrich, Cell factors stimulate human immunodeficiency virus type 1 reverse transcription in vitro., J. Virol. 82 (2008), 1425-37 
  44. D. Wodarz, D.H. Hamer, Infection dynamics in HIV-specific CD4 T cells: does a CD4 T cell boost benefit the host or the virus?, Math. Biosci. 209 (2007), 14-29 Zbl1120.92026MR2350865

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.