Global Stability of Steady Solutions for a Model in Virus Dynamics
Hermano Frid; Pierre-Emmanuel Jabin; Benoît Perthame
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 37, Issue: 4, page 709-723
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- N. Bellomo and L. Preziosi, Modeling and mathematical problems related to tumors immune system interactions. Math. Comput. Model.31 (2000) 413-452.
- R. Bürger,The mathematical theory of selection, recombination and mutation. Wiley (2000).
- M.A.J. Chaplain Ed., Special Issue on Mathematical Models for the Growth, Development and Treatment of Tumours. Math. Mod. Meth. Appl. S.9 (1999).
- E. De Angelis and P.-E. Jabin, Analysis of a mean field modelling of tumor and immune system competition. Math. Mod. Meth. Appl. S.13 (2003) 187-206.
- P. Degond and B. Lucquin-Desreux, The Fokker-Plansk asymptotics of the Boltzmann collision operator in the Coulomb case? Math. Mod. Meth. Appl. S.2 (1992) 167-182.
- O. Dieckmann and J.P. Heesterbeek, Mathematical Epidemiology of infectious Diseases. Wiley, New York (2000).
- O. Diekmann, P.-E. Jabin, S. Mischler and B. Perthame, Adaptive dynamics without time scale separation. Work in preparation.
- A. Lins, W. de Melo and C.C. Pugh, On Liénard's equation. Lecture Notes in Math.597 (1977) 334-357.
- R.M. May and M.A. Nowak, Virus dynamics (mathematical principles of immunology and virology). Oxford Univ. Press (2000).
- A.S. Perelson and G. Weisbuch, Immunology for physicists. Rev. modern phys.69 (1997) 1219-1267.
- J. Salda na, S.F. Elana and R.V. Solé, Coinfection and superinfection in RNA virus populations: a selection-mutation model. Math. Biosci.183 (2003) 135-160.
- C.H. Taubes, Modeling lectures on differential equations in biology. Prentice-Hall (2001).
- C. Villani, A review of mathematical topics in collisional kinetic theory, in Handbook of fluid mechanics, S. Friedlander and D. Serre Eds., Vol. 1. North-Holland, Amsterdam (2000) 71-305.
- D. Waxman, A model of population genetics and its mathematical relation to quantum theory. Contemp. phys.43 (2002) 13-20.