Sphères à courbure moyenne constante et problème isopérimétrique dans les variétés homogènes

Benoît Daniel[1]

  • [1] Université Paris-Est Laboratoire d’Analyse et de Mathématiques Appliquées CNRS UMR 8050 61 avenue du Général de Gaulle 94010 Créteil (France)

Séminaire de théorie spectrale et géométrie (2009-2010)

  • Volume: 28, page 13-27
  • ISSN: 1624-5458

Abstract

top
This is a survey on some recent results about the existence and the uniqueness of constant mean curvature spheres in simply connected homogeneous Riemannian 3-manifolds and their relation to the isoperimetric problem in these manifolds.

How to cite

top

Daniel, Benoît. "Sphères à courbure moyenne constante et problème isopérimétrique dans les variétés homogènes." Séminaire de théorie spectrale et géométrie 28 (2009-2010): 13-27. <http://eudml.org/doc/116461>.

@article{Daniel2009-2010,
abstract = {Nous passons en revue certains résultats récents sur l’existence et l’unicité des sphères à courbure moyenne constante dans les variétés riemanniennes homogènes simplement connexes de dimension $3$ et leurs liens avec le problème isopérimétrique dans ces variétés.},
affiliation = {Université Paris-Est Laboratoire d’Analyse et de Mathématiques Appliquées CNRS UMR 8050 61 avenue du Général de Gaulle 94010 Créteil (France)},
author = {Daniel, Benoît},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {Mean curvature; homogeneous Riemannian manifold; isoperimetric problem; Hopf theorem; Alexandrov theorem},
language = {fre},
pages = {13-27},
publisher = {Institut Fourier},
title = {Sphères à courbure moyenne constante et problème isopérimétrique dans les variétés homogènes},
url = {http://eudml.org/doc/116461},
volume = {28},
year = {2009-2010},
}

TY - JOUR
AU - Daniel, Benoît
TI - Sphères à courbure moyenne constante et problème isopérimétrique dans les variétés homogènes
JO - Séminaire de théorie spectrale et géométrie
PY - 2009-2010
PB - Institut Fourier
VL - 28
SP - 13
EP - 27
AB - Nous passons en revue certains résultats récents sur l’existence et l’unicité des sphères à courbure moyenne constante dans les variétés riemanniennes homogènes simplement connexes de dimension $3$ et leurs liens avec le problème isopérimétrique dans ces variétés.
LA - fre
KW - Mean curvature; homogeneous Riemannian manifold; isoperimetric problem; Hopf theorem; Alexandrov theorem
UR - http://eudml.org/doc/116461
ER -

References

top
  1. U. Abresch, H. Rosenberg, A Hopf differential for constant mean curvature surfaces in S 2 × R and H 2 × R , Acta Math. 193 (2004), 141-174 Zbl1078.53053MR2134864
  2. U. Abresch, H. Rosenberg, Generalized Hopf differentials, Mat. Contemp. 28 (2005), 1-28 Zbl1118.53036MR2195187
  3. H. Alencar, M. do Carmo, R. Tribuzy, A theorem of Hopf and the Cauchy-Riemann inequality, Comm. Anal. Geom. 15 (2007), 283-298 Zbl1134.53031MR2344324
  4. A. D. Alexandrov, A characteristic property of spheres, Ann. Mat. Pura Appl. (4) 58 (1962), 303-315 Zbl0107.15603MR143162
  5. J. L. Barbosa, M. do Carmo, Stability of hypersurfaces with constant mean curvature, Math. Z. 185 (1984), 339-353 Zbl0513.53002MR731682
  6. J. L. Barbosa, M. do Carmo, J. Eschenburg, Stability of hypersurfaces of constant mean curvature in Riemannian manifolds, Math. Z. 197 (1988), 123-138 Zbl0653.53045MR917854
  7. F. Bonahon, Geometric structures on 3-manifolds, Handbook of geometric topology (2002), 93-164, North-Holland, Amsterdam Zbl0997.57032MR1886669
  8. T. Coulhon, A. Grigor’yan, C. Pittet, A geometric approach to on-diagonal heat kernel lower bounds on groups, Ann. Inst. Fourier (Grenoble) 51 (2001), 1763-1827 Zbl1137.58307MR1871289
  9. B. Daniel, Isometric immersions into 3-dimensional homogeneous manifolds, Comment. Math. Helv. 82 (2007), 87-131 Zbl1123.53029MR2296059
  10. B. Daniel, L. Hauswirth, P. Mira, Constant mean curvature surfaces in homogeneous manifolds, (2009) 
  11. B. Daniel, P. Mira, Existence and uniqueness of constant mean curvature spheres in Sol 3 , (2008) 
  12. E. Gonzalez, U. Massari, I. Tamanini, On the regularity of boundaries of sets minimizing perimeter with a volume constraint, Indiana Univ. Math. J. 32 (1983), 25-37 Zbl0486.49024MR684753
  13. H. Hopf, Differential geometry in the large, 1000 (1989), Springer-Verlag, Berlin Zbl0669.53001MR1013786
  14. W.-T. Hsiang, W.-Y. Hsiang, On the uniqueness of isoperimetric solutions and imbedded soap bubbles in noncompact symmetric spaces. I, Invent. Math. 98 (1989), 39-58 Zbl0682.53057MR1010154
  15. J. W. Jenkins, Growth of connected locally compact groups, J. Functional Analysis 12 (1973), 113-127 Zbl0247.43001MR349895
  16. N. Kapouleas, Constant mean curvature surfaces constructed by fusing Wente tori, Invent. Math. 119 (1995), 443-518 Zbl0840.53005MR1317648
  17. W. H. Meeks, Constant mean curvature spheres in Sol 3 , (2010) 
  18. J. Milnor, Curvatures of left invariant metrics on Lie groups, Advances in Math. 21 (1976), 293-329 Zbl0341.53030MR425012
  19. F. Morgan, Regularity of isoperimetric hypersurfaces in Riemannian manifolds, Trans. Amer. Math. Soc. 355 (2003), 5041-5052 (electronic) Zbl1063.49031MR1997594
  20. F. Morgan, Geometric measure theory, (2009), Elsevier/Academic Press, Amsterdam Zbl1179.49050MR2455580
  21. R. Pedrosa, The isoperimetric problem in spherical cylinders, Ann. Global Anal. Geom. 26 (2004), 333-354 Zbl1082.53066MR2103404
  22. R. Pedrosa, Uma introdução à simetrização em análise e geometria, (2005), Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro MR2166496
  23. R. H. L. Pedrosa, M. Ritoré, Isoperimetric domains in the Riemannian product of a circle with a simply connected space form and applications to free boundary problems, Indiana Univ. Math. J. 48 (1999), 1357-1394 Zbl0956.53049MR1757077
  24. C. Pittet, The isoperimetric profile of homogeneous Riemannian manifolds, J. Differential Geom. 54 (2000), 255-302 Zbl1035.53069MR1818180
  25. R. Reilly, Applications of the Hessian operator in a Riemannian manifold, Indiana Univ. Math. J. 26 (1977), 459-472 Zbl0391.53019MR474149
  26. A. Ros, The isoperimetric problem, Global theory of minimal surfaces 2 (2005), 175-209, Amer. Math. Soc., Providence, RI Zbl1125.49034MR2167260
  27. E. Schmidt, Beweis der isoperimetrischen Eigenschaft der Kugel im hyperbolischen und sphärischen Raum jeder Dimensionenzahl, Math. Z. 49 (1943), 1-109 Zbl0028.31303MR9127
  28. P. Scott, The geometries of 3 -manifolds, Bull. London Math. Soc. 15 (1983), 401-487 Zbl0561.57001MR705527
  29. R. Souam, On stable constant mean curvature surfaces in 𝕊 2 × and 2 × , Trans. Amer. Math. Soc. 362 (2010), 2845-2857 Zbl1195.53089MR2592938
  30. F. Torralbo, F. Urbano, Compact stable constant mean curvature surfaces in the Berger spheres, (2009) Zbl1278.53065
  31. H. Wente, Counterexample to a conjecture of H. Hopf, Pacific J. Math. 121 (1986), 193-243 Zbl0586.53003MR815044

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.