A global continuation theorem for obtaining eigenvalues and bifurcation points

Milan Kučera

Czechoslovak Mathematical Journal (1988)

  • Volume: 38, Issue: 1, page 120-137
  • ISSN: 0011-4642

How to cite

top

Kučera, Milan. "A global continuation theorem for obtaining eigenvalues and bifurcation points." Czechoslovak Mathematical Journal 38.1 (1988): 120-137. <http://eudml.org/doc/13687>.

@article{Kučera1988,
author = {Kučera, Milan},
journal = {Czechoslovak Mathematical Journal},
keywords = {global continuation theorem; eigenvalues; bifurcation points; existence; connected branch; norm condition; bifurcation parameter},
language = {eng},
number = {1},
pages = {120-137},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A global continuation theorem for obtaining eigenvalues and bifurcation points},
url = {http://eudml.org/doc/13687},
volume = {38},
year = {1988},
}

TY - JOUR
AU - Kučera, Milan
TI - A global continuation theorem for obtaining eigenvalues and bifurcation points
JO - Czechoslovak Mathematical Journal
PY - 1988
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 38
IS - 1
SP - 120
EP - 137
LA - eng
KW - global continuation theorem; eigenvalues; bifurcation points; existence; connected branch; norm condition; bifurcation parameter
UR - http://eudml.org/doc/13687
ER -

References

top
  1. E. N. Dancer, 10.1512/iumj.1974.23.23087, Indiana Univ. Math. Journ., 23 (11), 1974, 1069-1076. (1974) Zbl0276.47051MR0348567DOI10.1512/iumj.1974.23.23087
  2. P. Drábek M. Kučera M. Míková, Bifurcation points of reaction-diffusion systems with unilateral conditions, Czechoslovak Math. J. 35 (110), 1985, 639-660. (1985) Zbl0604.35042MR0809047
  3. P. Drábek M. Kučera, Reaction-diffusion systems: Destabilizing effect of unilateral conditions, To appear in Nonlinear Analysis. Zbl0671.35043MR0969497
  4. M. Kučera, A new method for obtaining eigenvalues of variational inequalities based on bifurcation theory, Čas. pro pěst. matematiky, 104, 1979, 389-411. (1979) Zbl0406.58016MR0553173
  5. M. Kučera, Bifurcation points of variational inequalities, Czechoslovak Math. J. 32 (107), 1982, 208-226. (1982) Zbl0621.49006MR0654057
  6. M. Kučera, A new method for obtaining eigenvalues of variational inequalities. Operators with multiple eigenvalues, Czechoslovak Math. J. 32 (107), 1982, 197-207. (1982) Zbl0621.49005MR0654056
  7. J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Paris, 1969. (1969) Zbl0189.40603MR0259693
  8. E. Miersemann, 10.1002/mana.19780850116, Math. Nachr. 85, 1978, 195-213. (1978) Zbl0324.49036MR0517651DOI10.1002/mana.19780850116
  9. E. Miersemann, Höhere Eigenwerte von Variationsungleichungen, Beiträge zur Analysis 17, 1981, 65-68. (1981) Zbl0475.49016MR0663272
  10. L. Nirenberg, Topics in nonlinear functional analysis, New York 1974. (1974) Zbl0286.47037MR0488102
  11. P. H. Rabinowitz, 10.1016/0022-1236(71)90030-9, J. Functional Analysis 7, 1971, 487-513. (1971) Zbl0212.16504MR0301587DOI10.1016/0022-1236(71)90030-9
  12. P. Quittner, Spectral analysis of variational inequalities, Comment. Math. Univ. Carol. 27 (1986), 605. (1986) Zbl0652.49008MR0873631
  13. P. Quittner, Bifurcation points and eigenvalues of inequalities of reaction-diffusion type, To appear. Zbl0617.35053MR0916198
  14. G. T. Whyburn, Topological Analysis, Princeton Univ. Press, Princeton, N.J., 1958. (1958) Zbl0080.15903MR0070161
  15. E. H. Zarantonello, Projections on convex sets in Hilbert space and spectral theory, In Contributions to Nonlinear Functional Analysis (edited by E. H. Zarantonello). Academic Press, New York, 1971. (1971) Zbl0281.47043

Citations in EuDML Documents

top
  1. Jan Eisner, Milan Kučera, Hopf bifurcation and ordinary differential inequalities
  2. Milan Kučera, Bifurcation of periodic solutions to variational inequalities in κ based on Alexander-Yorke theorem
  3. Claudio Saccon, Autovalori di alcune disequazioni variazionali con vincoli puntati sulle derivate
  4. Jan Eisner, Reaction-diffusion systems: Destabilizing effect of conditions given by inclusions
  5. Marco Degiovanni, Bifurcation for odd nonlinear elliptic variational inequalities

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.