Bifurcation points of reaction-diffusion systems with unilateral conditions
Pavel Drábek; Milan Kučera; Marta Míková
Czechoslovak Mathematical Journal (1985)
- Volume: 35, Issue: 4, page 639-660
- ISSN: 0011-4642
Access Full Article
topHow to cite
topDrábek, Pavel, Kučera, Milan, and Míková, Marta. "Bifurcation points of reaction-diffusion systems with unilateral conditions." Czechoslovak Mathematical Journal 35.4 (1985): 639-660. <http://eudml.org/doc/13548>.
@article{Drábek1985,
author = {Drábek, Pavel, Kučera, Milan, Míková, Marta},
journal = {Czechoslovak Mathematical Journal},
keywords = {Stationary solutions; reaction-diffusion systems; unilateral conditions; bifurcation; spatially homogeneous stationary solution; stable},
language = {eng},
number = {4},
pages = {639-660},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Bifurcation points of reaction-diffusion systems with unilateral conditions},
url = {http://eudml.org/doc/13548},
volume = {35},
year = {1985},
}
TY - JOUR
AU - Drábek, Pavel
AU - Kučera, Milan
AU - Míková, Marta
TI - Bifurcation points of reaction-diffusion systems with unilateral conditions
JO - Czechoslovak Mathematical Journal
PY - 1985
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 35
IS - 4
SP - 639
EP - 660
LA - eng
KW - Stationary solutions; reaction-diffusion systems; unilateral conditions; bifurcation; spatially homogeneous stationary solution; stable
UR - http://eudml.org/doc/13548
ER -
References
top- E. N. Dancer, 10.1512/iumj.1974.23.23087, Ind. Univ. Math. J. 23 (1974), 1069-1076. (1974) Zbl0276.47051MR0348567DOI10.1512/iumj.1974.23.23087
- S. Fučík A. Kufner, Nonlinear differential equations, Elsevier, Scient. Publ. Соmр., Amsterdam-Oxford- New York 1980. (1980) MR0558764
- P. Drábek M. Kučera, Eigenvalues of inequalities of reaction-diffusion type and destabilizing effect of unilateral conditions, To appear in Czech. Math. J., 1986. (1986) MR0822872
- M. Kučera, A new method for obtaining eigenvalues of variational inequalities based on bifurcation theory, Čas. pěst. mat. 104 (1979), 389-411. (1979) MR0553173
- M. Kučera, A new method for obtaining eigenvalues of variational inequalities. Operators with multiple eigenvalues, Czechoslovak Math. J., 32 (107) (1982), 197-207. (1982) MR0654056
- M. Kučera, Bifurcations points of variational inequalities, Czechoslovak Math. J., 32 (107) (1982), 208-226. (1982) MR0654057
- M. Kučera J. Neustupa, Destabilizing effect of unilateral conditions in reaction-diffusion systems, To appear in Comment. Math. Univ. Carol., 1986. (1986) MR0843429
- Y. Nishiura, 10.1137/0513037, SIAM J. Math. Anal. Vol. 13, No. 4, July 1982, 555-593. (1982) Zbl0505.76103MR0661590DOI10.1137/0513037
- P. H. Rabinowitz, 10.1016/0022-1236(71)90030-9, J. Funct. Anal. 7 (1971), 487-513. (1971) Zbl0212.16504MR0301587DOI10.1016/0022-1236(71)90030-9
- E. H. Zarantonello, Projections on convex sets in Hilbert space and spectral theory, In "Contributions to Nonlinear Functional Analysis" (edited by E. H. Zarantonello). Academic Press, New York, 1971. (1971) Zbl0281.47043
- E. Zeidler, Vorlesungen über nichtlineare Funktionalanalysis I - Fixpunktsätze, Teubner-Texte zur Mathematik, Leipzig 1976. (1976) Zbl0326.47053MR0473927
Citations in EuDML Documents
top- Martin Väth, Instability of Turing type for a reaction-diffusion system with unilateral obstacles modeled by variational inequalities
- Milan Kučera, Reaction-diffusion systems: stabilizing effect of conditions described by quasivariational inequalities
- Jamol I. Baltaev, Milan Kučera, Martin Väth, A variational approach to bifurcation in reaction-diffusion systems with Signorini type boundary conditions
- Milan Kučera, Jiří Neustupa, Destabilizing effect of unilateral conditions in reaction-diffusion systems
- Pavel Drábek, Milan Kučera, Eigenvalues of inequalities of reaction-diffusion type and destabilizing effect of unilateral conditions
- Milan Kučera, A global continuation theorem for obtaining eigenvalues and bifurcation points
- Jan Eisner, Milan Kučera, Spatial patterns for reaction-diffusion systems with conditions described by inclusions
- Jan Eisner, Milan Kučera, Martin Väth, A variational approach to bifurcation points of a reaction-diffusion system with obstacles and Neumann boundary conditions
- Pavol Quittner, Solvability and multiplicity results for variational inequalities
- Jan Eisner, Reaction-diffusion systems: Destabilizing effect of conditions given by inclusions
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.